search
HomeBackend DevelopmentPython Tutorialpython基础教程之获取本机ip数据包示例

这几天用到了raw socket,用python写了些demo程序,这里记录下。

首先我们看一个简单的sniffer程序:

复制代码 代码如下:

#! /usr/bin/python
# code for linux
import socket
#s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_UDP)
s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_TCP)
while True:
    print s.recvfrom(65535)

这里直接用raw socket接收数据,直接print操作。这个就几行代码,也没什么好解释的了,不懂的google下。

得到IP数据包后,接下来的工作就是对IP头进行解析,在这之前,我们先看看RFC中是怎么定义的(RFC791 : http://www.ietf.org/rfc/rfc791.txt ):

python基础教程之获取本机ip数据包示例

即对应的图:

python基础教程之获取本机ip数据包示例

从RFC和上图中可以看到IP数据包头各个字段所占的位数,我们可以根据这些定义去解析IP数据包头,然后根据相应的策略处理数据。
这里给出一段用python实现的解析IP头的代码(呵呵,是demo中的代码,只解析了前20个字节):

复制代码 代码如下:

def decodeIpHeader(packet):
        mapRet = {}
        mapRet["version"] = (int(ord(packet[0])) & 0xF0)>>4
        mapRet["headerLen"] = (int(ord(packet[0])) & 0x0F)        mapRet["serviceType"] = hex(int(ord(packet[1])))
        mapRet["totalLen"] = (int(ord(packet[2])        mapRet["identification"] = (int( ord(packet[4])>>8 )) + (int( ord(packet[5])))
        mapRet["id"] = int(ord(packet[6]) & 0xE0)>>5
        mapRet["fragOff"] = int(ord(packet[6]) & 0x1F)        mapRet["ttl"] = int(ord(packet[8]))
        mapRet["protocol"] = int(ord(packet[9]))
        mapRet["checkSum"] = int(ord(packet[10])        mapRet["srcaddr"] = "%d.%d.%d.%d" % (int(ord(packet[12])),int(ord(packet[13])),int(ord(packet[14])), int(ord(packet[15])))
        mapRet["dstaddr"] = "%d.%d.%d.%d" % (int(ord(packet[16])),int(ord(packet[17])),int(ord(packet[18])), int(ord(packet[19])))
        return mapRet

调用代码:

复制代码 代码如下:

proto = socket.getprotobyname('tcp') # only tcp
sock = socket.socket(socket.AF_INET, socket.SOCK_RAW, proto)

while True:
        packet = sock.recvfrom(65535)[0]
        if len(packet) == 0:
                sck.close()
        else:
                #print str(packet)
                mapIpTmp = decodeIpHeader(packet)
                for k,v in mapIpTmp.items():
                        print k,"\t:\t",v

        print ""

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Explain how memory is allocated for lists versus arrays in Python.Explain how memory is allocated for lists versus arrays in Python.May 03, 2025 am 12:10 AM

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

How do you specify the data type of elements in a Python array?How do you specify the data type of elements in a Python array?May 03, 2025 am 12:06 AM

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

What is NumPy, and why is it important for numerical computing in Python?What is NumPy, and why is it important for numerical computing in Python?May 03, 2025 am 12:03 AM

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Discuss the concept of 'contiguous memory allocation' and its importance for arrays.Discuss the concept of 'contiguous memory allocation' and its importance for arrays.May 03, 2025 am 12:01 AM

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

How do you slice a Python list?How do you slice a Python list?May 02, 2025 am 12:14 AM

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

What are some common operations that can be performed on NumPy arrays?What are some common operations that can be performed on NumPy arrays?May 02, 2025 am 12:09 AM

NumPyallowsforvariousoperationsonarrays:1)Basicarithmeticlikeaddition,subtraction,multiplication,anddivision;2)Advancedoperationssuchasmatrixmultiplication;3)Element-wiseoperationswithoutexplicitloops;4)Arrayindexingandslicingfordatamanipulation;5)Ag

How are arrays used in data analysis with Python?How are arrays used in data analysis with Python?May 02, 2025 am 12:09 AM

ArraysinPython,particularlythroughNumPyandPandas,areessentialfordataanalysis,offeringspeedandefficiency.1)NumPyarraysenableefficienthandlingoflargedatasetsandcomplexoperationslikemovingaverages.2)PandasextendsNumPy'scapabilitieswithDataFramesforstruc

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool