#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import optparse
LOCATION_NONE = 'NONE'
LOCATION_MID = 'MID'
LOCATION_MID_GAP = 'MID_GAP'
LOCATION_TAIL = 'TAIL'
LOCATION_TAIL_GAP = 'TAIL_GAP'
Notations = {
LOCATION_NONE: '',
LOCATION_MID: '├─',
LOCATION_MID_GAP: '│ ',
LOCATION_TAIL: '└─',
LOCATION_TAIL_GAP: ' '
}
class Node(object):
def __init__(self, name, depth, parent=None, location=LOCATION_NONE):
self.name = name
self.depth = depth
self.parent = parent
self.location = location
self.children = []
def __str__(self):
sections = [self.name]
parent = self.has_parent()
if parent:
if self.is_tail():
sections.insert(0, Notations[LOCATION_TAIL])
else:
sections.insert(0, Notations[LOCATION_MID])
self.__insert_gaps(self, sections)
return ''.join(sections)
def __insert_gaps(self, node, sections):
parent = node.has_parent()
# parent exists and parent's parent is not the root node
if parent and parent.has_parent():
if parent.is_tail():
sections.insert(0, Notations[LOCATION_TAIL_GAP])
else:
sections.insert(0, Notations[LOCATION_MID_GAP])
self.__insert_gaps(parent, sections)
def has_parent(self):
return self.parent
def has_children(self):
return self.children
def add_child(self, node):
self.children.append(node)
def is_tail(self):
return self.location == LOCATION_TAIL
class Tree(object):
def __init__(self):
self.nodes = []
def debug_print(self):
for node in self.nodes:
print(str(node) + '/')
def write2file(self, filename):
try:
with open(filename, 'w') as fp:
fp.writelines(str(node) + '/\n'
for node in self.nodes)
except IOError as e:
print(e)
return 0
return 1
def build(self, path):
self.__build(path, 0, None, LOCATION_NONE)
def __build(self, path, depth, parent, location):
if os.path.isdir(path):
name = os.path.basename(path)
node = Node(name, depth, parent, location)
self.add_node(node)
if parent:
parent.add_child(node)
entries = self.list_folder(path)
end_index = len(entries) - 1
for i, entry in enumerate(entries):
childpath = os.path.join(path, entry)
location = LOCATION_TAIL if i == end_index else LOCATION_MID
self.__build(childpath, depth + 1, node, location)
def list_folder(self, path):
"""Folders only."""
return [d for d in os.listdir(path) if os.path.isdir(os.path.join(path, d))]
# for entry in os.listdir(path):
# childpath = os.path.join(path, entry)
# if os.path.isdir(childpath):
# yield entry
def add_node(self, node):
self.nodes.append(node)
def _parse_args():
parser = optparse.OptionParser()
parser.add_option(
'-p', '--path', dest='path', action='store', type='string',
default='./', help='the path to generate the tree [default: %default]')
parser.add_option(
'-o', '--out', dest='file', action='store', type='string',
help='the file to save the result [default: pathname.trees]')
options, args = parser.parse_args()
# positional arguments are ignored
return options
def main():
options = _parse_args()
path = options.path
if not os.path.isdir(path):
print('%s is not a directory' % path)
return 2
if not path or path == './':
filepath = os.path.realpath(__file__) # for linux
path = os.path.dirname(filepath)
tree = Tree()
tree.build(path)
# tree.debug_print()
if options.file:
filename = options.file
else:
name = os.path.basename(path)
filename = '%s.trees' % name
return tree.write2file(filename)
if __name__ == '__main__':
import sys
sys.exit(main())
运行效果
gtest_start/
├─build/
├─lib/
│ └─gtest/
├─output/
│ ├─primer/
│ │ ├─Debug/
│ │ │ ├─lib/
│ │ │ └─obj/
│ │ └─Release/
│ │ ├─lib/
│ │ └─obj/
│ └─thoughts/
│ ├─Debug/
│ │ ├─lib/
│ │ └─obj/
│ └─Release/
│ ├─lib/
│ └─obj/
├─src/
│ ├─primer/
│ └─thoughts/
├─test/
│ ├─primer/
│ └─thoughts/
├─third_party/
│ └─gtest/
└─tools/

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
