闭包(closure)是函数式编程的重要的语法结构。函数式编程是一种编程范式 (而面向过程编程和面向对象编程也都是编程范式)。在面向过程编程中,我们见到过函数(function);在面向对象编程中,我们见过对象(object)。函数和对象的根本目的是以某种逻辑方式组织代码,并提高代码的可重复使用性(reusability)。闭包也是一种组织代码的结构,它同样提高了代码的可重复使用性。
不同的语言实现闭包的方式不同。Python以函数对象为基础,为闭包这一语法结构提供支持的 (我们在特殊方法与多范式中,已经多次看到Python使用对象来实现一些特殊的语法)。Python一切皆对象,函数这一语法结构也是一个对象。在函数对象中,我们像使用一个普通对象一样使用函数对象,比如更改函数对象的名字,或者将函数对象作为参数进行传递。
函数对象的作用域
和其他对象一样,函数对象也有其存活的范围,也就是函数对象的作用域。函数对象是使用def语句定义的,函数对象的作用域与def所在的层级相同。比如下面代码,我们在line_conf函数的隶属范围内定义的函数line,就只能在line_conf的隶属范围内调用。
def line_conf():
def line(x):
return 2*x+1
print(line(5)) # within the scope
line_conf()
print(line(5)) # out of the scope
line函数定义了一条直线(y = 2x + 1)。可以看到,在line_conf()中可以调用line函数,而在作用域之外调用line将会有下面的错误:
NameError: name 'line' is not defined
说明这时已经在作用域之外。
同样,如果使用lambda定义函数,那么函数对象的作用域与lambda所在的层级相同。
闭包
函数是一个对象,所以可以作为某个函数的返回结果。
def line_conf():
def line(x):
return 2*x+1
return line # return a function object
my_line = line_conf()
print(my_line(5))
上面的代码可以成功运行。line_conf的返回结果被赋给line对象。上面的代码将打印11。
如果line()的定义中引用了外部的变量,会发生什么呢?
def line_conf():
b = 15
def line(x):
return 2*x+b
return line # return a function object
b = 5
my_line = line_conf()
print(my_line(5))
我们可以看到,line定义的隶属程序块中引用了高层级的变量b,但b信息存在于line的定义之外 (b的定义并不在line的隶属程序块中)。我们称b为line的环境变量。事实上,line作为line_conf的返回值时,line中已经包括b的取值(尽管b并不隶属于line)。
上面的代码将打印25,也就是说,line所参照的b值是函数对象定义时可供参考的b值,而不是使用时的b值。
一个函数和它的环境变量合在一起,就构成了一个闭包(closure)。在Python中,所谓的闭包是一个包含有环境变量取值的函数对象。环境变量取值被保存在函数对象的__closure__属性中。比如下面的代码:
def line_conf():
b = 15
def line(x):
return 2*x+b
return line # return a function object
b = 5
my_line = line_conf()
print(my_line.__closure__)
print(my_line.__closure__[0].cell_contents)
__closure__里包含了一个元组(tuple)。这个元组中的每个元素是cell类型的对象。我们看到第一个cell包含的就是整数15,也就是我们创建闭包时的环境变量b的取值。
下面看一个闭包的实际例子:
def line_conf(a, b):
def line(x):
return ax + b
return line
line1 = line_conf(1, 1)
line2 = line_conf(4, 5)
print(line1(5), line2(5))
这个例子中,函数line与环境变量a,b构成闭包。在创建闭包的时候,我们通过line_conf的参数a,b说明了这两个环境变量的取值,这样,我们就确定了函数的最终形式(y = x + 1和y = 4x + 5)。我们只需要变换参数a,b,就可以获得不同的直线表达函数。由此,我们可以看到,闭包也具有提高代码可复用性的作用。
如果没有闭包,我们需要每次创建直线函数的时候同时说明a,b,x。这样,我们就需要更多的参数传递,也减少了代码的可移植性。利用闭包,我们实际上创建了泛函。line函数定义一种广泛意义的函数。这个函数的一些方面已经确定(必须是直线),但另一些方面(比如a和b参数待定)。随后,我们根据line_conf传递来的参数,通过闭包的形式,将最终函数确定下来。
闭包与并行运算
闭包有效的减少了函数所需定义的参数数目。这对于并行运算来说有重要的意义。在并行运算的环境下,我们可以让每台电脑负责一个函数,然后将一台电脑的输出和下一台电脑的输入串联起来。最终,我们像流水线一样工作,从串联的电脑集群一端输入数据,从另一端输出数据。这样的情境最适合只有一个参数输入的函数。闭包就可以实现这一目的。
并行运算正称为一个热点。这也是函数式编程又热起来的一个重要原因。函数式编程早在1950年代就已经存在,但应用并不广泛。然而,我们上面描述的流水线式的工作并行集群过程,正适合函数式编程。由于函数式编程这一天然优势,越来越多的语言也开始加入对函数式编程范式的支持。

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Chinese version
Chinese version, very easy to use

Dreamweaver Mac version
Visual web development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft