Buy Me a Coffee☕
*Memos:
- My post explains OxfordIIITPet().
RandomCrop() can crop an image randomly as shown below:
*Memos:
- The 1st argument for initialization is size(Required-Type:int or tuple/list(int) or size()):
*Memos:
- It's [height, width].
- It must be 1
- A tuple/list must be the 1D with 1 or 2 elements.
- A single value(int or tuple/list(int)) means [size, size].
- The 2nd argument for initialization is padding(Optional-Default:None-Type:int or tuple/list(int)):
*Memos:
- It's [left, top, right, bottom] which can be converted from [left-right, top-bottom] or [left-top-right-bottom].
- A tuple/list must be the 1D with 1, 2 or 4 elements.
- A single value(int or tuple/list(int)) means [padding, padding, padding, padding].
- Double values(tuple/list(int)) means [padding[0], padding[1], padding[0], padding[1]].
- The 3rd argument for initialization is pad_if_needed(Optional-Default:False-Type:bool):
- If it's False and size is smaller than an original image or the padded image by padding, there is error.
- If it's True and size is smaller than an original image or the padded image by padding, there is no error, then the image is randomly padded to become size.
- The 4th argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)):
*Memos:
- It can change the background of an image. *The background can be seen when an image is positively padded.
- A tuple/list must be the 1D with 1 or 3 elements.
- The 5th argument for initialization is padding_mode(Optional-Default:'constant'-Type:str). *'constant', 'edge', 'reflect' or 'symmetric' can be set to it.
- The 1st argument is img(Required-Type:PIL Image or tensor(int)):
*Memos:
- A tensor must be 2D or 3D.
- Don't use img=.
- v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomCrop randomcrop = RandomCrop(size=100) randomcrop = RandomCrop(size=100, padding=None, pad_if_needed=False, fill=0, padding_mode='constant') randomcrop # RandomCrop(size=(100, 100), # pad_if_needed=False, # fill=0, # padding_mode=constant) randomcrop.size # (100, 100) print(randomcrop.padding) # None randomcrop.pad_if_needed # False randomcrop.fill # 0 randomcrop.padding_mode # 'constant' origin_data = OxfordIIITPet( root="data", transform=None ) s300_data = OxfordIIITPet( # `s` is size. root="data", transform=RandomCrop(size=300) # transform=RandomCrop(size=[300, 300]) ) s200_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200) ) s100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=100) ) s50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=50) ) s10_data = OxfordIIITPet( root="data", transform=RandomCrop(size=10) ) s1_data = OxfordIIITPet( root="data", transform=RandomCrop(size=1) ) s200_300_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[200, 300]) ) s300_200_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[300, 200]) ) s300p100_data = OxfordIIITPet( # `p` is padding. root="data", transform=RandomCrop(size=300, padding=100) # transform=RandomCrop(size=300, padding=[100, 100]) # transform=RandomCrop(size=300, padding=[100, 100, 100, 100]) ) s300p200_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=200) ) s700_594p100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=100) ) s300p100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100) ) s600_594p100_50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 594], padding=[100, 50]) ) s300p100_50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=[100, 50]) ) s650_494p25_50_75_100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[650, 494], padding=[25, 50, 75, 100]) ) s300p25_50_75_100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=[25, 50, 75, 100]) ) s300_194pn100origin_data = OxfordIIITPet( # `n` is negative. root="data", transform=RandomCrop(size=[300, 194], padding=-100) ) s150pn100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=150, padding=-100) ) s300_294pn50n100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[300, 294], padding=[-50, -100]) ) s150pn50n100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=150, padding=[-50, -100]) ) s350_294pn25n50n75n100origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[350, 294], padding=[-25, -50, -75, -100]) ) s150pn25n50n75n100_data = OxfordIIITPet( root="data", transform=RandomCrop(size=150, padding=[-25, -50, -75, -100]) ) s600_444p25_50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 444], padding=[25, 50]) ) s200p25_50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[25, 50]) ) s400_344pn25n50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[400, 344], padding=[-25, -50]) ) s200pn25n50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[-25, -50]) ) s400_444p25n50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[400, 444], padding=[25, -50]) ) s200p25n50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[25, -50]) ) s600_344pn25_50origin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[600, 344], padding=[-25, 50]) ) s200pn25_50_data = OxfordIIITPet( root="data", transform=RandomCrop(size=200, padding=[-25, 50]) ) s700_594p100fgrayorigin_data = OxfordIIITPet( # `f` is fill. root="data", transform=RandomCrop(size=[700, 594], padding=100, fill=150) # transform=RandomCrop(size=[700, 594], padding=100, fill=[150]) ) s300p100fgray_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, fill=150) ) s700_594p100fpurpleorigin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=100, fill=[160, 32, 240]) ) s300p100fpurple_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, fill=[160, 32, 240]) ) s700_594p100pmconstorigin_data = OxfordIIITPet( # `pm` is padding_mode. root="data", # `const` is constant. transform=RandomCrop(size=[700, 594], padding=100, padding_mode='constant') ) s300p100pmconst_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='constant') ) s700_594p100pmedgeorigin_data = OxfordIIITPet( root="data", transform=RandomCrop(size=[700, 594], padding=100, padding_mode='edge') ) s300p100pmedge_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='edge') ) s700_594p100pmrefleorigin_data = OxfordIIITPet( # `refle` is reflect. root="data", transform=RandomCrop(size=[700, 594], padding=100, padding_mode='reflect') ) s300p100pmrefle_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='reflect') ) s700_594p100pmsymmeorigin_data = OxfordIIITPet( # `symme` is symmetric. root="data", transform=RandomCrop(size=[700, 594], padding=100, padding_mode='symmetric') ) s300p100pmsymme_data = OxfordIIITPet( root="data", transform=RandomCrop(size=300, padding=100, padding_mode='symmetric') ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i in range(1, 6): plt.subplot(1, 5, i) plt.imshow(X=data[0][0]) plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="s500_394origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images1(data=origin_data, main_title="s500_394origin_data") show_images1(data=s300_data, main_title="s300_data") show_images1(data=s200_data, main_title="s200_data") show_images1(data=s100_data, main_title="s100_data") show_images1(data=s50_data, main_title="s50_data") show_images1(data=s10_data, main_title="s10_data") show_images1(data=s1_data, main_title="s1_data") show_images1(data=s200_300_data, main_title="s200_300_data") show_images1(data=s300_200_data, main_title="s300_200_data") print() show_images1(data=s700_594p100origin_data, main_title="s700_594p100origin_data") show_images1(data=s300p100_data, main_title="s300p100_data") print() show_images1(data=s600_594p100_50origin_data, main_title="s600_594p100_50origin_data") show_images1(data=s300p100_50_data, main_title="s300p100_50_data") print() show_images1(data=s650_494p25_50_75_100origin_data, main_title="s650_494p25_50_75_100origin_data") show_images1(data=s300p25_50_75_100_data, main_title="s300p25_50_75_100_data") print() show_images1(data=s300_194pn100origin_data, main_title="s300_194pn100origin_data") show_images1(data=s150pn100_data, main_title="s150pn100_data") print() show_images1(data=s300_294pn50n100origin_data, main_title="s300_294pn50n100origin_data") show_images1(data=s150pn50n100_data, main_title="s150pn50n100_data") print() show_images1(data=s350_294pn25n50n75n100origin_data, main_title="s350_294pn25n50n75n100origin_data") show_images1(data=s150pn25n50n75n100_data, main_title="s150pn25n50n75n100_data") print() show_images1(data=s600_444p25_50origin_data, main_title="s600_444p25_50origin_data") show_images1(data=s200p25_50_data, main_title="s200p25_50_data") print() show_images1(data=s400_344pn25n50origin_data, main_title="s400_344pn25n50origin_data") show_images1(data=s200pn25n50_data, main_title="s200pn25n50_data") print() show_images1(data=s400_444p25n50origin_data, main_title="s400_444p25n50origin_data") show_images1(data=s200p25n50_data, main_title="s200p25n50_data") print() show_images1(data=s600_344pn25_50origin_data, main_title="s600_344pn25_50origin_data") show_images1(data=s200pn25_50_data, main_title="s200pn25_50_data") print() show_images1(data=s700_594p100fgrayorigin_data, main_title="s700_594p100fgrayorigin_data") show_images1(data=s300p100fgray_data, main_title="s300p100fgray_data") print() show_images1(data=s700_594p100fpurpleorigin_data, main_title="s700_594p100fpurpleorigin_data") show_images1(data=s300p100fpurple_data, main_title="s300p100fpurple_data") print() show_images1(data=s700_594p100pmconstorigin_data, main_title="s700_594p100pmconstorigin_data") show_images1(data=s300p100pmconst_data, main_title="s300p100pmconst_data") print() show_images1(data=s700_594p100pmedgeorigin_data, main_title="s700_594p100pmedgeorigin_data") show_images1(data=s300p100pmedge_data, main_title="s300p100pmedge_data") print() show_images1(data=s700_594p100pmrefleorigin_data, main_title="s700_594p100pmrefleorigin_data") show_images1(data=s300p100pmrefle_data, main_title="s300p100pmrefle_data") print() show_images1(data=s700_594p100pmsymmeorigin_data, main_title="s700_594p100pmsymmeorigin_data") show_images1(data=s300p100pmsymme_data, main_title="s300p100pmsymme_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None, p=None, pin=False, f=0, pm='constant'): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) temp_s = s im = data[0][0] for i in range(1, 6): plt.subplot(1, 5, i) if not temp_s: s = [im.size[1], im.size[0]] rc = RandomCrop(size=s, padding=p, # Here pad_if_needed=pin, fill=f, padding_mode=pm) plt.imshow(X=rc(im)) # Here plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="s500_394origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images2(data=origin_data, main_title="s500_394origin_data") show_images2(data=origin_data, main_title="s300_data", s=300) show_images2(data=origin_data, main_title="s200_data", s=200) show_images2(data=origin_data, main_title="s100_data", s=100) show_images2(data=origin_data, main_title="s50_data", s=50) show_images2(data=origin_data, main_title="s10_data", s=10) show_images2(data=origin_data, main_title="s1_data", s=1) show_images2(data=origin_data, main_title="s200_300_data", s=[200, 300]) show_images2(data=origin_data, main_title="s300_200_data", s=[300, 200]) print() show_images2(data=origin_data, main_title="s700_594p100origin_data", s=[700, 594], p=100) show_images2(data=origin_data, main_title="s300p100_data", s=300, p=100) print() show_images2(data=origin_data, main_title="s600_594p100_50origin_data", s=[600, 594], p=[100, 50]) show_images2(data=origin_data, main_title="s300p100_50_data", s=300, p=[100, 50]) print() show_images2(data=origin_data, main_title="s650_494p25_50_75_100origin_data", s=[650, 494], p=[25, 50, 75, 100]) show_images2(data=origin_data, main_title="s300p25_50_75_100_data", s=300, p=[25, 50, 75, 100]) print() show_images2(data=origin_data, main_title="s300_194pn100origin_data", s=[300, 194], p=-100) show_images2(data=origin_data, main_title="s150pn100_data", s=150, p=-100) print() show_images2(data=origin_data, main_title="s300_294pn50n100origin_data", s=[300, 294], p=[-50, -100]) show_images2(data=origin_data, main_title="s150pn50n100_data", s=150, p=[-50, -100]) print() show_images2(data=origin_data, main_title="s350_294pn25n50n75n100origin_data", s=[350, 294], p=[-25, -50, -75, -100]) show_images2(data=origin_data, main_title="s150pn25n50n75n100_data", s=150, p=[-25, -50, -75, -100]) print() show_images2(data=origin_data, main_title="s600_444p25_50origin_data", s=[600, 444], p=[25, 50]) show_images2(data=origin_data, main_title="s200p25_50_data", s=200, p=[25, 50]) print() show_images2(data=origin_data, main_title="s400_344pn25n50origin_data", s=[400, 344], p=[-25, -50]) show_images2(data=origin_data, main_title="s200pn25n50_data", s=200, p=[-25, -50]) print() show_images2(data=origin_data, main_title="s400_444p25n50origin_data", s=[400, 444], p=[25, -50]) show_images2(data=origin_data, main_title="s200p25n50_data", s=200, p=[25, -50]) print() show_images2(data=origin_data, main_title="s600_344pn25_50origin_data", s=[600, 344], p=[-25, 50]) show_images2(data=origin_data, main_title="s200pn25_50_data", s=200, p=[-25, 50]) print() show_images2(data=origin_data, main_title="s700_594p100fgrayorigin_data", s=[700, 594], p=100, f=150) show_images2(data=origin_data, main_title="s300p100fgray_data", s=300, p=100, f=150) print() show_images2(data=origin_data, main_title="s700_594p100fpurpleorigin_data", s=[700, 594], p=100, f=[160, 32, 240]) show_images2(data=origin_data, main_title="s300p100fpurple_data", s=300, p=100, f=[160, 32, 240]) print() show_images2(data=origin_data, main_title="s700_594p100pmconstorigin_data", s=[700, 594], p=100, pm='constant') show_images2(data=origin_data, main_title="s300p100pmconst_data", s=300, p=100, pm='constant') print() show_images2(data=origin_data, main_title="s700_594p100pmedgeorigin_data", s=[700, 594], p=100, pm='edge') show_images2(data=origin_data, main_title="s300p100pmedge_data", s=300, p=100, pm='edge') print() show_images2(data=origin_data, main_title="s700_594p100pmrefleorigin_data", s=[700, 594], p=100, pm='reflect') show_images2(data=origin_data, main_title="s300p100pmrefle_data", s=300, p=100, pm='reflect') print() show_images2(data=origin_data, main_title="s700_594p100pmsymmeorigin_data", s=[700, 594], p=100, pm='symmetric') show_images2(data=origin_data, main_title="s300p100pmsymme_data", s=300, p=100, pm='symmetric')
The above is the detailed content of RandomCrop in PyTorch (1). For more information, please follow other related articles on the PHP Chinese website!

Article discusses passing functions as arguments in Python, highlighting benefits like modularity and use cases such as sorting and decorators.

Article discusses / and // operators in Python: / for true division, // for floor division. Main issue is understanding their differences and use cases.Character count: 158

Article discusses using Python's floor() function from math module to round numbers down, comparing it with round() function, and its use with negative numbers.

The article discusses variable scope in Python, detailing local and global scopes, and the impact of scope on variable accessibility. It highlights common mistakes to avoid for effective code management.

Python requires indentation to define code blocks, unlike other languages using braces. Incorrect indentation causes syntax errors, logical issues, and readability problems. Tools like IDEs and linters help manage it.

The article discusses dynamically typed languages, where type checking occurs at runtime, contrasting with statically typed languages. It examines the advantages like flexibility and rapid development, and impacts on software development and maintena

Python is primarily an interpreted language, impacting its performance, development speed, and cross-platform compatibility. The article discusses the nuances of Python's interpretation process and its effects on these aspects.

The reasons why Python scripts cannot run on Unix systems include: 1) Insufficient permissions, using chmod xyour_script.py to grant execution permissions; 2) Shebang line is incorrect or missing, you should use #!/usr/bin/envpython; 3) The environment variables are not set properly, and you can print os.environ debugging; 4) Using the wrong Python version, you can specify the version on the Shebang line or the command line; 5) Dependency problems, using virtual environment to isolate dependencies; 6) Syntax errors, using python-mpy_compileyour_script.py to detect.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

Dreamweaver CS6
Visual web development tools
