search
HomeBackend DevelopmentPython TutorialExploring Kokoro TTS Voice Synthesis on Google Colab with T4

Exploring Kokoro TTS Voice Synthesis on Google Colab with T4

KOKORO-82M: High-performance text transfer voice (TTS) model exploration

KOKORO-82M is a high-performance TTS model that can generate high-quality audio. It supports simple text conversion, and can easily synthesize voice synthesis by retention of audio file application rights.

KOKORO-82M

Starting from version 0.23, KOKORO-82M also supports Japanese. You can try it easily through the following link:

[Kokoro TTS on Hugging Face Spaces]

However, the tone of Japanese is still slightly unnatural.

In this tutorial, we will use KOKORO-Onnx, which is a TTS implementation with KOKORO and onnx. We will use version 0.19 (a stable version), which only supports voice synthesis of American English and English English.

As shown in the title, the code will be performed in Google Colab.

Install KOKORO-ONNX

Load the package

!git lfs install
!git clone https://huggingface.co/hexgrad/Kokoro-82M
%cd Kokoro-82M
!apt-get -qq -y install espeak-ng > /dev/null 2>&1
!pip install -q phonemizer torch transformers scipy munch
!pip install -U kokoro-onnx
Run examples

Before testing voice synthesis, let us run the official example. Run the following code to generate and play audio within a few seconds.

import numpy as np
from scipy.io.wavfile import write
from IPython.display import display, Audio
from models import build_model
import torch
from models import build_model
from kokoro import generate

voice synthesis

Now, let's enter the theme and test voice synthesis.

Define the voice pack
device = 'cuda' if torch.cuda.is_available() else 'cpu'
MODEL = build_model('kokoro-v0_19.pth', device)
VOICE_NAME = [
    'af', # 默认语音是 Bella 和 Sarah 的 50-50 混合
    'af_bella', 'af_sarah', 'am_adam', 'am_michael',
    'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
    'af_nicole', 'af_sky',
][0]
VOICEPACK = torch.load(f'voices/{VOICE_NAME}.pt', weights_only=True).to(device)
print(f'Loaded voice: {VOICE_NAME}')

text = "How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born."
audio, out_ps = generate(MODEL, text, VOICEPACK, lang=VOICE_NAME[0])

display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)

AF: American English female voice

AM: American English male voice

BF: British English female voice BM: British English male voice

    We will now load all available voice packages.
  • Use the predetermined voice to generate text
  • In order to check the differences between synthetic voice, let us use different voice packages to generate audio. We will use the same example text, but you can change the
  • variable to use any required voice pack.
voice synthesis: mixed voice
voicepack_af = torch.load(f'voices/af.pt', weights_only=True).to(device)
voicepack_af_bella = torch.load(f'voices/af_bella.pt', weights_only=True).to(device)
voicepack_af_nicole = torch.load(f'voices/af_nicole.pt', weights_only=True).to(device)
voicepack_af_sarah = torch.load(f'voices/af_sarah.pt', weights_only=True).to(device)
voicepack_af_sky = torch.load(f'voices/af_sky.pt', weights_only=True).to(device)
voicepack_am_adam = torch.load(f'voices/am_adam.pt', weights_only=True).to(device)
voicepack_am_michael = torch.load(f'voices/am_michael.pt', weights_only=True).to(device)
voicepack_bf_emma = torch.load(f'voices/bf_emma.pt', weights_only=True).to(device)
voicepack_bf_isabella = torch.load(f'voices/bf_isabella.pt', weights_only=True).to(device)
voicepack_bm_george = torch.load(f'voices/bm_george.pt', weights_only=True).to(device)
voicepack_bm_lewis = torch.load(f'voices/bm_lewis.pt', weights_only=True).to(device)

First, let us create an average voice, combined with two British female voices (BF).

Next, let's combine the combination of two female voices and a male voice. voicepack_

#  以下代码段与原文相同,只是重复了多次,为了简洁,这里省略了重复的代码块。
#  每个代码块都使用不同的语音包生成音频,并使用 display(Audio(...)) 播放。
Finally, let us synthesize the mix of American and British male voices.

I also used Gradio to test the effect of hybrid voice: (here should be inserted into the link or screenshot of the Gradio demonstration)

The combination of this combination with Ollama may produce some interesting experiments.

bf_average = (voicepack_bf_emma + voicepack_bf_isabella) / 2
audio, out_ps = generate(MODEL, text, bf_average, lang=VOICE_NAME[0])
display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)
This Revied Output Maintains The Original Meaning and Structure While Improving the Flow and Clarity. Eric Voice Packs Have Been Summarized to Avoid Redance. Remember to Replace Placeholders like "[You should insert Hugging Face here Spaces link] "And" (here should be inserted into the link or screenshot of the Gradio demonstration) "with the actual links or images.

The above is the detailed content of Exploring Kokoro TTS Voice Synthesis on Google Colab with T4. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to solve the permissions problem encountered when viewing Python version in Linux terminal?How to solve the permissions problem encountered when viewing Python version in Linux terminal?Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools