In this article, we explore an elegant and efficient Python solution to convert empty strings to an arbitrary value within nestled data structures (dictionaries and lists). The original TypeScript solution, although functional, inspired a more concise and "pythonica" approach using recursion and comprehension .
Initially, the need came when dealing with three distinct files containing different python nestled data structures. The search for a generic solution has led to the development of a recursive function that runs through the data structure, replacing empty strings with a standard value ("unconstrated" in the example).
The first version of the Python function used explicit loops to iterate about dictionaries and lists. However, the evolution to dictionary Comphension and List Comprahension resulted in a significantly more compact and readable code, maintaining the same recursive logic.
The final solution in Python:
def substituir_strings_vazias(dados): if isinstance(dados, dict): return {k: substituir_strings_vazias(v) for k, v in dados.items()} elif isinstance(dados, list): return [substituir_strings_vazias(item) for item in dados] elif isinstance(dados, str) and dados == "": return "NAO_ENCONTRADO" return dados dados = { "nome": "", "idade": 25, "endereco": { "rua": "", "cidade": "São Paulo", "estado": "" }, "contatos": ["", "email@example.com"] } dados_convertidos = substituir_strings_vazias(dados) print(dados_convertidos)
How it works:
The function is recursive. She checks the type of data received: substituir_strings_vazias
-
Dictionary: If it is a dictionary, it uses dictionary comprehension to create a new dictionary where each value is recursively processed by the same function.
- List:
If it is a list, it uses List Composition to create a new list where each item is recursively processed. >
- Empty string:
If it is an empty string, it returns "unconstrated".
- Other types:
For any other type of data, it returns the original data without modifications.
Recursion ensures that the function processes all nestled levels of the data structure. Python code conciseness, thanks to Comphension
The above is the detailed content of DAY REFACTORY - TS PYTHON RECURUTISIVE AND TYPES. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

WebStorm Mac version
Useful JavaScript development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
