C# and .NET: Unveiling Hidden Surprises
Software development often reveals unexpected behaviors. C# and .NET, while powerful, are no exception. This article explores some intriguing corner cases that can challenge even experienced developers.
String Creation: A Counterintuitive Result
Consider this seemingly simple code snippet:
string x = new string(new char[0]); string y = new string(new char[0]); Console.WriteLine(object.ReferenceEquals(x, y));
The output is True
, contradicting the expectation that new
creates distinct objects for reference types. The Common Language Runtime (CLR) optimizes this specific scenario, reusing the same empty string instance.
Generic Types and Nullable
The following code demonstrates another unexpected behavior:
static void Foo<T>() where T : new() { T t = new T(); Console.WriteLine(t.ToString()); // Works fine Console.WriteLine(t.GetHashCode()); // Works fine Console.WriteLine(t.Equals(t)); // Works fine // This throws a NullReferenceException... Console.WriteLine(t.GetType()); }
When T
is Nullable<t></t>
(e.g., int?
), a NullReferenceException
occurs when calling GetType()
. This is because Nullable<t></t>
overrides most methods, but not GetType()
. The boxing process during the call to the non-overridden GetType()
results in a null value.
Proxy Attributes and the new()
Constraint: Defying Expectations
Ayende Rahien highlighted a similar, yet more sophisticated, scenario:
private static void Main() { CanThisHappen<MyFunnyType>(); } public static void CanThisHappen<T>() where T : class, new() { var instance = new T(); // new() on a ref-type; should be non-null, then Debug.Assert(instance != null, "How did we break the CLR?"); }
This code, surprisingly, can fail the assertion. By using a proxy attribute (like MyFunnyProxyAttribute
) that intercepts the new()
call and returns null
, the assertion can be violated. This demonstrates the potential for unexpected interactions between runtime behavior and custom attributes. These examples highlight the importance of thorough testing and a deep understanding of the CLR's inner workings to avoid unexpected pitfalls in C# and .NET development.
The above is the detailed content of What Unexpected Behaviors and Corner Cases Exist in C# and .NET?. For more information, please follow other related articles on the PHP Chinese website!

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

The main differences between C# and C are syntax, memory management and performance: 1) C# syntax is modern, supports lambda and LINQ, and C retains C features and supports templates. 2) C# automatically manages memory, C needs to be managed manually. 3) C performance is better than C#, but C# performance is also being optimized.

You can use the TinyXML, Pugixml, or libxml2 libraries to process XML data in C. 1) Parse XML files: Use DOM or SAX methods, DOM is suitable for small files, and SAX is suitable for large files. 2) Generate XML file: convert the data structure into XML format and write to the file. Through these steps, XML data can be effectively managed and manipulated.

Working with XML data structures in C can use the TinyXML or pugixml library. 1) Use the pugixml library to parse and generate XML files. 2) Handle complex nested XML elements, such as book information. 3) Optimize XML processing code, and it is recommended to use efficient libraries and streaming parsing. Through these steps, XML data can be processed efficiently.

C still dominates performance optimization because its low-level memory management and efficient execution capabilities make it indispensable in game development, financial transaction systems and embedded systems. Specifically, it is manifested as: 1) In game development, C's low-level memory management and efficient execution capabilities make it the preferred language for game engine development; 2) In financial transaction systems, C's performance advantages ensure extremely low latency and high throughput; 3) In embedded systems, C's low-level memory management and efficient execution capabilities make it very popular in resource-constrained environments.

The choice of C XML framework should be based on project requirements. 1) TinyXML is suitable for resource-constrained environments, 2) pugixml is suitable for high-performance requirements, 3) Xerces-C supports complex XMLSchema verification, and performance, ease of use and licenses must be considered when choosing.

C# is suitable for projects that require development efficiency and type safety, while C is suitable for projects that require high performance and hardware control. 1) C# provides garbage collection and LINQ, suitable for enterprise applications and Windows development. 2)C is known for its high performance and underlying control, and is widely used in gaming and system programming.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Chinese version
Chinese version, very easy to use

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
