


Unlock the Magic of Images: A Quick and Easy Guide to Using the Cutting-Edge SmolVLM-M Model
This article showcases SmolVLM-500M-Instruct, a cutting-edge, compact vision-to-text model. Despite its relatively small size (500 million parameters), it demonstrates impressive capabilities.
Here's the Python code:
import torch from transformers import AutoProcessor, AutoModelForVision2Seq from PIL import Image import warnings warnings.filterwarnings("ignore", message="Some kwargs in processor config are unused") def describe_image(image_path): processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct") model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct") image = Image.open(image_path) prompt = "Describe the image content in detail. Provide a concise textual response." inputs = processor(text=[prompt], images=[image], return_tensors="pt") with torch.no_grad(): outputs = model.generate( pixel_values=inputs["pixel_values"], input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=150, do_sample=True, temperature=0.7 ) description = processor.batch_decode(outputs, skip_special_tokens=True)[0] return description.strip() if __name__ == "__main__": image_path = "images/bender.jpg" try: description = describe_image(image_path) print("Image Description:", description) except Exception as e: print(f"Error: {e}")
This script leverages the Hugging Face Transformers library to generate a textual description from an image. It loads a pre-trained model and processor, processes the image, and outputs a descriptive text. Error handling is included.
The code is available here: https://www.php.cn/link/042886829869470b75f63dddfd7e9d9d
Using the following non-stock image (placed in the project's image directory):
The model generates a description (the prompt and parameters can be adjusted for finer control): A robot, seated on a couch, is engrossed in reading a book. Bookshelves and a door are visible in the background. A white chair with a cushion is also in the scene.
The model's speed and efficiency are noteworthy compared to larger language models.
The above is the detailed content of Unlock the Magic of Images: A Quick and Easy Guide to Using the Cutting-Edge SmolVLM-M Model. For more information, please follow other related articles on the PHP Chinese website!

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

NumPyallowsforvariousoperationsonarrays:1)Basicarithmeticlikeaddition,subtraction,multiplication,anddivision;2)Advancedoperationssuchasmatrixmultiplication;3)Element-wiseoperationswithoutexplicitloops;4)Arrayindexingandslicingfordatamanipulation;5)Ag

ArraysinPython,particularlythroughNumPyandPandas,areessentialfordataanalysis,offeringspeedandefficiency.1)NumPyarraysenableefficienthandlingoflargedatasetsandcomplexoperationslikemovingaverages.2)PandasextendsNumPy'scapabilitieswithDataFramesforstruc


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

WebStorm Mac version
Useful JavaScript development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version
SublimeText3 Linux latest version
