Home >Backend Development >Python Tutorial >Python Typed Parameterized Decorators in Test Automation

Python Typed Parameterized Decorators in Test Automation

Patricia Arquette
Patricia ArquetteOriginal
2025-01-22 20:12:14514browse

Python Typed Parameterized Decorators in Test Automation

Python's decorator mechanism, combined with modern type hinting capabilities, significantly improves test automation. This powerful combination, leveraging Python's flexibility and the typing module's type safety, results in more maintainable, readable, and robust test suites. This article explores advanced techniques, focusing on their application within test automation frameworks.

Leveraging the typing Module's Enhancements

The typing module has undergone significant improvements:

  • PEP 585: Native support for generic types in standard collections minimizes reliance on the typing module for common types.
  • PEP 604: The | operator simplifies Union type annotations.
  • PEP 647: TypeAlias clarifies type alias definitions.
  • PEP 649: Deferred annotation evaluation speeds up startup for large projects.

Building Typed Parameterized Decorators

Here's how to create a decorator using these updated typing features:

<code class="language-python">from typing import Protocol, TypeVar, Generic, Callable, Any
from functools import wraps

# TypeVar for generic typing
T = TypeVar('T')

# Protocol for defining function structure
class TestProtocol(Protocol):
    def __call__(self, *args: Any, **kwargs: Any) -> Any:
        ...

def generic_decorator(param: str) -> Callable[[Callable[..., T]], Callable[..., T]]:
    """
    Generic decorator for functions returning type T.

    Args:
        param:  A string parameter.

    Returns:
        A callable wrapping the original function.
    """
    def decorator(func: Callable[..., T]) -> Callable[..., T]:
        @wraps(func)  # Preserves original function metadata
        def wrapper(*args: Any, **kwargs: Any) -> T:
            print(f"Decorator with param: {param}")
            return func(*args, **kwargs)
        return wrapper
    return decorator

@generic_decorator("test_param")
def test_function(x: int) -> int:
    """Returns input multiplied by 2."""
    return x * 2</code>

This decorator employs Protocol to define the structure of a test function, increasing flexibility for diverse function signatures in test frameworks.

Applying Decorators to Test Automation

Let's examine how these decorators enhance test automation:

1. Platform-Specific Tests using Literal

<code class="language-python">from typing import Literal, Callable, Any
import sys

def run_only_on(platform: Literal["linux", "darwin", "win32"]) -> Callable:
    """
    Runs a test only on the specified platform.

    Args:
        platform: Target platform.

    Returns:
        A callable wrapping the test function.
    """
    def decorator(func: Callable) -> Callable:
        @wraps(func)
        def wrapper(*args: Any, **kwargs: Any) -> Any:
            if sys.platform == platform:
                return func(*args, **kwargs)
            print(f"Skipping test on platform: {sys.platform}")
            return None
        return wrapper
    return decorator

@run_only_on("linux")
def test_linux_feature() -> None:
    """Linux-specific test."""
    pass</code>

Literal ensures type checkers recognize valid platform values, clarifying which tests run on which platforms—crucial for cross-platform testing.

2. Timeout Decorators with Threading

<code class="language-python">from typing import Callable, Any, Optional
import threading
import time
from concurrent.futures import ThreadPoolExecutor, TimeoutError

def timeout(seconds: int) -> Callable:
    """
    Enforces a timeout on test functions.

    Args:
        seconds: Maximum execution time.

    Returns:
        A callable wrapping the function with timeout logic.
    """
    def decorator(func: Callable) -> Callable:
        @wraps(func)
        def wrapper(*args: Any, **kwargs: Any) -> Optional[Any]:
            with ThreadPoolExecutor(max_workers=1) as executor:
                future = executor.submit(func, *args, **kwargs)
                try:
                    return future.result(timeout=seconds)
                except TimeoutError:
                    print(f"Function {func.__name__} timed out after {seconds} seconds")
                    return None
        return wrapper
    return decorator

@timeout(5)
def test_long_running_operation() -> None:
    """Test that times out if it takes too long."""
    time.sleep(10)  # Triggers timeout</code>

This uses threading for reliable timeout functionality, essential when controlling test execution time.

3. Retry Mechanism with Union Types

<code class="language-python">from typing import Callable, Any, Union, Type, Tuple, Optional
import time

def retry_on_exception(
    exceptions: Union[Type[Exception], Tuple[Type[Exception], ...]], 
    attempts: int = 3,
    delay: float = 1.0
) -> Callable:
    """
    Retries a function on specified exceptions.

    Args:
        exceptions: Exception type(s) to catch.
        attempts: Maximum retry attempts.
        delay: Delay between attempts.

    Returns:
        A callable wrapping the function with retry logic.
    """
    def decorator(func: Callable) -> Callable:
        @wraps(func)
        def wrapper(*args: Any, **kwargs: Any) -> Any:
            last_exception: Optional[Exception] = None
            for attempt in range(attempts):
                try:
                    return func(*args, **kwargs)
                except exceptions as e:
                    last_exception = e
                    print(f"Attempt {attempt + 1} failed with {type(e).__name__}: {str(e)}")
                    time.sleep(delay)
            if last_exception:
                raise last_exception
        return wrapper
    return decorator

@retry_on_exception(Exception, attempts=5)
def test_network_connection() -> None:
    """Test network connection with retry logic."""
    pass</code>

This refined version uses comprehensive type hints, robust exception handling, and a configurable retry delay. Union types allow for flexibility in specifying exception types.

Conclusion

Integrating Python's advanced typing features into decorators improves both type safety and code readability, significantly enhancing test automation frameworks. Explicit type definitions ensure tests run under correct conditions, with appropriate error handling and performance constraints. This leads to more robust, maintainable, and efficient testing, especially valuable in large, distributed, or multi-platform test environments.

The above is the detailed content of Python Typed Parameterized Decorators in Test Automation. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn