Buy Me a Coffee☕
*Memos:
- My post explains CocoDetection() using train2014 with captions_train2014.json, instances_train2014.json and person_keypoints_train2014.json, val2014 with captions_val2014.json, instances_val2014.json and person_keypoints_val2014.json and test2017 with image_info_test2014.json, image_info_test2015.json and image_info_test-dev2015.json.
- My post explains CocoDetection() using train2017 with captions_train2017.json, instances_train2017.json and person_keypoints_train2017.json, val2017 with captions_val2017.json, instances_val2017.json and person_keypoints_val2017.json and test2017 with image_info_test2017.json and image_info_test-dev2017.json.
- My post explains MS COCO.
CocoDetection() can use MS COCO dataset as shown below. *This is for train2017 with stuff_train2017.json, val2017 with stuff_val2017.json, stuff_train2017_pixelmaps with stuff_train2017.json, stuff_val2017_pixelmaps with stuff_val2017.json, panoptic_train2017 with panoptic_train2017.json, panoptic_val2017 with panoptic_val2017.json and unlabeled2017 with image_info_unlabeled2017.json:
from torchvision.datasets import CocoDetection stf_train2017_data = CocoDetection( root="data/coco/imgs/train2017", annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json" ) stf_val2017_data = CocoDetection( root="data/coco/imgs/val2017", annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json" ) len(stf_train2017_data), len(stf_val2017_data) # (118287, 5000) # pms_stf_train2017_data = CocoDetection( # root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps", # annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json" # ) # Error # pms_stf_val2017_data = CocoDetection( # root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps", # annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json" # ) # Error # pan_train2017_data = CocoDetection( # root="data/coco/anns/panoptic_trainval2017/panoptic_train2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json" # ) # Error # pan_val2017_data = CocoDetection( # root="data/coco/anns/panoptic_trainval2017/panoptic_val2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json" # ) # Error unlabeled2017_data = CocoDetection( root="data/coco/imgs/unlabeled2017", annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json" ) len(unlabeled2017_data) # 123403 stf_train2017_data[2] # (<pil.image.image image mode="RGB" size="640x428">, # [{'segmentation': {'counts': 'W2a0S2Q1T7mNmHS1R7mN...0100000000', # 'size': [428, 640]}, 'area': 112666.0, 'iscrowd': 0, 'image_id': 30, # 'bbox': [0.0, 0.0, 640.0, 321.0], 'category_id': 119, 'id': 10000010}, # {'segmentation': ..., 'category_id': 124, 'id': 10000011}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 10000014}]) stf_train2017_data[47] # (<pil.image.image image mode="RGB" size="640x427">, # [{'segmentation': {'counts': '\\j1h0[<a0g2n001o0...00001o0000 ... stf_train2017_data image mode="RGB" size="480x640">, # [{'segmentation': {'counts': '0[9e:1O000000O100000...O5mc0F^Zj7', # 'size': [640, 480]}, 'area': 20503.0, 'iscrowd': 0, 'image_id': 370, # 'bbox': [0.0, 0.0, 79.0, 316.0], 'category_id': 102, 'id': 10000383}, # {'segmentation': ..., 'category_id': 105, 'id': 10000384}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 10000389}]) stf_val2017_data[2] # (<pil.image.image image mode="RGB" size="640x483">, # [{'segmentation': {'counts': '\9g5]9O1O1O;EU1kNU1...VMKQ?NY`d3', # 'size': [483, 640]}, 'area': 5104.0, 'iscrowd': 0, 'image_id': 632, # 'bbox': [0.0, 300.0, 392.0, 183.0], 'category_id': 93, 'id': 20000017}, # {'segmentation': ..., 'category_id': 128, 'id': 20000018}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000020}]) stf_val2017_data[47] # (<pil.image.image image mode="RGB" size="640x480">, # [{'segmentation': {'counts': '[da7T1X>D3M2J5M4M4LoQg1', # 'size': [480, 640]}, 'area': 122.0, 'iscrowd': 0, 'image_id': 5001, # 'bbox': [515.0, 235.0, 7.0, 36.0], 'category_id': 104, 'id': 20000247}, # {'segmentation': ..., 'category_id': 105, 'id': 20000248}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000256}]) stf_val2017_data[64] # (<pil.image.image image mode="RGB" size="640x483">, # [{'segmentation': {'counts': 'UN020mN]B2e>N1O...Mb@N^?2hd2', # 'size': [500, 375]}, 'area': 2404.0, 'iscrowd': 0, 'image_id': 6763, # 'bbox': [0.0, 235.0, 369.0, 237.0], 'category_id': 105, 'id': 20000356}, # {'segmentation': ..., 'category_id': 123, 'id': 20000357}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000362}]) unlabeled2017_data[2] # (<pil.image.image image mode="RGB" size="640x427">, []) unlabeled2017_data[47] # (<pil.image.image image mode="RGB" size="428x640">, []) unlabeled2017_data[64] # (<pil.image.image image mode="RGB" size="640x480">, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import numpy as np from pycocotools import mask # `show_images1()` doesn't work very well for the images with # segmentations so for it, use `show_images2()` which # more uses the original coco functions. def show_images1(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) for i, axis in zip(ims, axes.ravel()): if data[i][1] and "segmentation" in data[i][1][0]: im, anns = data[i] axis.imshow(X=im) axis.set_title(label=anns[0]["image_id"]) ec = ['g', 'r', 'c', 'm', 'y', 'w'] ec_index = 0 for ann in anns: seg = ann['segmentation'] compressed_rld = mask.decode(rleObjs=seg) y_plts, x_plts = np.nonzero(a=np.squeeze(a=compressed_rld)) axis.plot(x_plts, y_plts, alpha=0.4) x, y, w, h = ann['bbox'] rect = Rectangle(xy=(x, y), width=w, height=h, linewidth=3, edgecolor=ec[ec_index], facecolor='none', zorder=2) ec_index += 1 if ec_index == len(ec)-1: ec_index = 0 axis.add_patch(p=rect) elif not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (2, 47, 64) show_images1(data=stf_train2017_data, ims=ims, main_title="stf_train2017_data") show_images1(data=stf_val2017_data, ims=ims, main_title="stf_val2017_data") show_images1(data=unlabeled2017_data, ims=ims, main_title="unlabeled2017_data") def show_images2(data, index, main_title=None): img_set = data[index] img, img_anns = img_set if img_anns and "segmentation" in img_anns[0]: img_id = img_anns[0]['image_id'] coco = data.coco def show_image(imgIds, areaRng=[], iscrowd=None, draw_bbox=False): plt.figure(figsize=(11, 8)) plt.imshow(X=img) plt.suptitle(t=main_title, y=1, fontsize=14) plt.title(label=img_id, fontsize=14) anns_ids = coco.getAnnIds(imgIds=img_id, areaRng=areaRng, iscrowd=iscrowd) anns = coco.loadAnns(ids=anns_ids) coco.showAnns(anns=anns, draw_bbox=draw_bbox) plt.show() show_image(imgIds=img_id, draw_bbox=True) show_image(imgIds=img_id, draw_bbox=False) show_image(imgIds=img_id, iscrowd=False, draw_bbox=True) show_image(imgIds=img_id, areaRng=[0, 5000], draw_bbox=True) elif not img_anns: plt.figure(figsize=(11, 8)) plt.imshow(X=img) plt.suptitle(t=main_title, y=1, fontsize=14) plt.show() show_images2(data=stf_val2017_data, index=47, main_title="stf_train2017_data") </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></a0g2n001o0...00001o0000></pil.image.image></pil.image.image>
show_images1():
show_images2():
The above is the detailed content of CocoDetection in PyTorch (3). For more information, please follow other related articles on the PHP Chinese website!

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

NumPyallowsforvariousoperationsonarrays:1)Basicarithmeticlikeaddition,subtraction,multiplication,anddivision;2)Advancedoperationssuchasmatrixmultiplication;3)Element-wiseoperationswithoutexplicitloops;4)Arrayindexingandslicingfordatamanipulation;5)Ag

ArraysinPython,particularlythroughNumPyandPandas,areessentialfordataanalysis,offeringspeedandefficiency.1)NumPyarraysenableefficienthandlingoflargedatasetsandcomplexoperationslikemovingaverages.2)PandasextendsNumPy'scapabilitieswithDataFramesforstruc


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver Mac version
Visual web development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Mac version
God-level code editing software (SublimeText3)
