


Deploying an AI Traffic Congestion Predictor using AWS Bedrock: A Complete Overview
We all love traffic, right? The only time where I think about how I totally messed up my presentation (overthinking is a pain).
All jokes aside, I've wanted to create a project where I can look for traffic in real-time as a PoC so that I further enhance it in the future. Meet the traffic congestion predictor.
I'll walk through deploying the Traffic Congestion Predictor using AWS Bedrock. AWS Bedrock provides a fully managed service for foundation models, making it perfect for deploying AI applications. We'll cover everything from initial setup to final deployment and testing.
Now, the prerequisites
- AWS Account with appropriate permissions (Had to use my debit card for verification because I assumed it was free to use for a certain limit. Pain).
- Python 3.8
- Traffic Congestion Predictor code (from previous development)
- AWS CLI installed and configured
- Basic knowledge of Python and AWS services will do just fine.
Step 1: Preparing Your Environment
First, set up your development environment:
# Create a new virtual environment python -m venv bedrock-env source bedrock-env/bin/activate # On Windows use: bedrock-env\Scripts\activate # Install required packages pip install boto3 pandas numpy scikit-learn streamlit plotly
Step 2: AWS Bedrock Setup
Navigate to AWS Console and enable AWS Bedrock
Create a new model in Bedrock:
- Go to the AWS Bedrock console
- Select "Model access"
- Request access to Claude model family
- Wait for approval (usually instant but anything can happen)
Step 3: Modify Code for Bedrock Integration
Create a new file "bedrock_integration.py":
import boto3 import json import numpy as np import pandas as pd from typing import Dict, Any class TrafficPredictor: def __init__(self): self.bedrock = boto3.client( service_name='bedrock-runtime', region_name='us-east-1' # Change to your region ) def prepare_features(self, input_data: Dict[str, Any]) -> pd.DataFrame: # Convert input data to model features hour = input_data['hour'] day = input_data['day'] features = pd.DataFrame({ 'hour_sin': [np.sin(2 * np.pi * hour/24)], 'hour_cos': [np.cos(2 * np.pi * hour/24)], 'day_sin': [np.sin(2 * np.pi * day/7)], 'day_cos': [np.cos(2 * np.pi * day/7)], 'temperature': [input_data['temperature']], 'precipitation': [input_data['precipitation']], 'special_event': [input_data['special_event']], 'road_work': [input_data['road_work']], 'vehicle_count': [input_data['vehicle_count']] }) return features def predict(self, input_data: Dict[str, Any]) -> float: features = self.prepare_features(input_data) # Prepare prompt for Claude prompt = f""" Based on the following traffic conditions, predict the congestion level (0-10): - Time: {input_data['hour']}:00 - Day of week: {input_data['day']} - Temperature: {input_data['temperature']}°C - Precipitation: {input_data['precipitation']}mm - Special event: {'Yes' if input_data['special_event'] else 'No'} - Road work: {'Yes' if input_data['road_work'] else 'No'} - Vehicle count: {input_data['vehicle_count']} Return only the numerical prediction. """ # Call Bedrock response = self.bedrock.invoke_model( modelId='anthropic.claude-v2', body=json.dumps({ "prompt": prompt, "max_tokens": 10, "temperature": 0 }) ) # Parse response response_body = json.loads(response['body'].read()) prediction = float(response_body['completion'].strip()) return np.clip(prediction, 0, 10)
Step 4: Create FastAPI Backend
Create "api.py:"
from fastapi import FastAPI, HTTPException from pydantic import BaseModel from bedrock_integration import TrafficPredictor from typing import Dict, Any app = FastAPI() predictor = TrafficPredictor() class PredictionInput(BaseModel): hour: int day: int temperature: float precipitation: float special_event: bool road_work: bool vehicle_count: int @app.post("/predict") async def predict_traffic(input_data: PredictionInput) -> Dict[str, float]: try: prediction = predictor.predict(input_data.dict()) return {"congestion_level": prediction} except Exception as e: raise HTTPException(status_code=500, detail=str(e))
Step 5: Create AWS Infrastructure
Create "infrastructure.py":
import boto3 import json def create_infrastructure(): # Create ECR repository ecr = boto3.client('ecr') try: ecr.create_repository(repositoryName='traffic-predictor') except ecr.exceptions.RepositoryAlreadyExistsException: pass # Create ECS cluster ecs = boto3.client('ecs') ecs.create_cluster(clusterName='traffic-predictor-cluster') # Create task definition task_def = { 'family': 'traffic-predictor', 'containerDefinitions': [{ 'name': 'traffic-predictor', 'image': f'{ecr.describe_repositories()["repositories"][0]["repositoryUri"]}:latest', 'memory': 512, 'cpu': 256, 'essential': True, 'portMappings': [{ 'containerPort': 8000, 'hostPort': 8000, 'protocol': 'tcp' }] }], 'requiresCompatibilities': ['FARGATE'], 'networkMode': 'awsvpc', 'cpu': '256', 'memory': '512' } ecs.register_task_definition(**task_def)
Step 6: Containerise the Application
Create "Dockerfile:"
FROM python:3.9-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]
Create "requirements.txt:"
fastapi uvicorn boto3 pandas numpy scikit-learn
Step 7: Deploy to AWS
Run these commands:
# Build and push Docker image aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com docker build -t traffic-predictor . docker tag traffic-predictor:latest $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/traffic-predictor:latest docker push $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/traffic-predictor:latest # Create infrastructure python infrastructure.py
Step 8: Update Streamlit Frontend
Modify "app.py" to connect to the API:
import streamlit as st import requests import plotly.graph_objects as go import plotly.express as px API_ENDPOINT = "your-api-endpoint" def predict_traffic(input_data): response = requests.post(f"{API_ENDPOINT}/predict", json=input_data) return response.json()["congestion_level"] # Rest of the Streamlit code remains the same, but replace direct model calls # with API calls using predict_traffic()
Step 9: Testing and Monitoring
Test the API endpoint:
curl -X POST "your-api-endpoint/predict" \ -H "Content-Type: application/json" \ -d '{"hour":12,"day":1,"temperature":25,"precipitation":0,"special_event":false,"road_work":false,"vehicle_count":1000}'
Monitor using AWS CloudWatch:
- Set up CloudWatch dashboard
- Create alarms for error rates and latency
- Monitor API usage and costs
If everything goes well. Congratulations! You've successfully deployed a traffic congestion predictor. Pad yourself on the back for that one! Make sure you monitor costs and performance, regularly update the model, and implement a CI/CD pipeline. The next steps are adding user authentication, enhancing monitoring and alerting, optimising model performance, and adding more features based on user feedback.
Thanks for reading this. Let me know any thoughts, questions or observations!
The above is the detailed content of Deploying an AI Traffic Congestion Predictor using AWS Bedrock: A Complete Overview. For more information, please follow other related articles on the PHP Chinese website!

Create multi-dimensional arrays with NumPy can be achieved through the following steps: 1) Use the numpy.array() function to create an array, such as np.array([[1,2,3],[4,5,6]]) to create a 2D array; 2) Use np.zeros(), np.ones(), np.random.random() and other functions to create an array filled with specific values; 3) Understand the shape and size properties of the array to ensure that the length of the sub-array is consistent and avoid errors; 4) Use the np.reshape() function to change the shape of the array; 5) Pay attention to memory usage to ensure that the code is clear and efficient.

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

ForPythondatastorage,chooselistsforflexibilitywithmixeddatatypes,array.arrayformemory-efficienthomogeneousnumericaldata,andNumPyarraysforadvancednumericalcomputing.Listsareversatilebutlessefficientforlargenumericaldatasets;array.arrayoffersamiddlegro

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1)Listscanholdelementsofdifferenttypes,2)theyaredynamic,allowingeasyadditionsandremovals,3)theyofferintuitiveoperationslikeslicing,but4)theyarelessmemory-efficientandslowerforlargedatasets.

ToaccesselementsinaPythonarray,useindexing:my_array[2]accessesthethirdelement,returning3.Pythonuseszero-basedindexing.1)Usepositiveandnegativeindexing:my_list[0]forthefirstelement,my_list[-1]forthelast.2)Useslicingforarange:my_list[1:5]extractselemen

Article discusses impossibility of tuple comprehension in Python due to syntax ambiguity. Alternatives like using tuple() with generator expressions are suggested for creating tuples efficiently.(159 characters)

The article explains modules and packages in Python, their differences, and usage. Modules are single files, while packages are directories with an __init__.py file, organizing related modules hierarchically.

Article discusses docstrings in Python, their usage, and benefits. Main issue: importance of docstrings for code documentation and accessibility.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Zend Studio 13.0.1
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
