Home >Backend Development >Python Tutorial >[Python] A Script for Processing and Analysing Bilibili Video Comments and Bullet Chats
Disclaimer: For personal learning and research purposes only. Strictly prohibited for other uses.
The script was developed for academic purposes in the humanities: specifically, for research on network platform discourse analysis. It enables a comprehensive study of Bilibili bullet chats and comments. The focus is on the vast content related to subcultures and social issues (based on the materials reviewed), requiring thorough investigation, analysis, supplementation, and summarisation.
Given the extensive content, the results are presented in links:
Research on comments and bullet chats from a subculture perspective:
https://nbviewer.org/github/Excalibra/scripts/blob/main/d-ipynb/Subculture Perspective Review and Bullet Screen Research.ipynb
The plan was to complete the research on "subcultures" and "social issues" sections before making it public. However, considering the needs of researchers and students in the field, it has been shared now.
Collects data such as video titles, authors, publication dates, view counts, favourites, shares, cumulative bullet chats, comment counts, video descriptions, categories, video links, and cover image links.
Extracts 100 bullet chats with sentiment scores, part-of-speech analysis, timestamps, and user IDs.
Retrieves 20 top comments, along with likes, sentiment scores, topic replies, membership IDs, names, and comment timestamps.
Bullet chats: Usernames, birthdays, registration dates, follower counts, and following counts (using cookies).
Comments: Displays the IP location of the commenter (via a web interface).
Outputs data to an Excel file with sentiment medians, word frequency statistics, word clouds, and bar charts.
Uses APIs to fetch JSON information, processes it into an Excel file, and employs language models such as SnowNLP, ThuNLP, and Jieba for text segmentation, stopword filtering, part-of-speech analysis, and word frequency statistics. Matplotlib is used for generating graphs.
(Windows users can use pip and python. Mac users should use pip3 and python3 by default.)
Script Source Code: GitHub Repository.
Prerequisite Libraries:
Install required libraries:
pip3 install --no-cache-dir -r https://ghproxy.com/https://github.com/Excalibra/scripts/blob/main/d-txt/requirements.txt
Then run the script (online):
python3 -c "$(curl -fsSL https://ghproxy.com/https://github.com/Excalibra/scripts/blob/main/d-python/get_bv_baseinfo.py)"
import json import time import requests import os from datetime import datetime import re from bs4 import BeautifulSoup from openpyxl import Workbook from openpyxl.styles import Alignment, Font from snownlp import SnowNLP import statistics import jieba from wordcloud import WordCloud import matplotlib.pyplot as plt import platform import thulac import matplotlib.font_manager as fm from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from selenium.webdriver.common.by import By ''''''''' # Reference Links ## General Regex: https://regex101.com/ Zhihu - Two ways to obtain Bilibili video bullet comments using Python: https://zhuanlan.zhihu.com/p/609154366 Juejin - Parsing Bilibili video bullet comments: https://juejin.cn/post/7137928570080329741 CSDN - Bilibili historical bullet comment crawler: https://blog.csdn.net/sinat_18665801/article/details/104519838 CSDN - How to write a Bilibili bullet comment crawler: https://blog.csdn.net/bigbigsman/article/details/78639053?utm_source=app Bilibili - Bilibili bullet comment notes: https://www.bilibili.com/read/cv5187469/ Bilibili third-party API: https://www.bookstack.cn/read/BilibiliAPIDocs/README.md ## Reverse Lookup by UID https://github.com/esterTion/BiliBili_crc2mid https://github.com/cwuom/GetDanmuSender/blob/main/main.py https://github.com/Aruelius/crc32-crack ## User Basic Information https://api.bilibili.com/x/space/acc/info?mid=298220126 https://github.com/ria-klee/bilibili-uid https://github.com/SocialSisterYi/bilibili-API-collect/blob/master/docs/user/space.md ## Comments https://www.bilibili.com/read/cv10120255/ https://github.com/SocialSisterYi/bilibili-API-collect/blob/master/docs/comment/readme.md ## JSON https://json-schema.apifox.cn https://bbs.huaweicloud.com/blogs/279515 https://www.cnblogs.com/mashukui/p/16972826.html ## Cookie https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Cookies ## Unpacking https://www.cnblogs.com/will-wu/p/13251545.html https://www.w3schools.com/python/python_tuples.asp ''''''''''' class BilibiliAPI: @staticmethod # Parse video link basic information JSON and return it in JSON format def get_bv_json(video_url): video_id = re.findall(r'BV\w+', video_url)[0] api_url = f'https://api.bilibili.com/x/web-interface/view?bvid={video_id}' bv_json = requests.get(api_url).json() return bv_json @staticmethod # Parse video link bullet comments XML using the 'cid' field in JSON def get_danmu_xml(bv_json): cid = bv_json['data']["cid"] api_url = f'https://comment.bilibili.com/{cid}.xml' danmu_xml = api_url return danmu_xml @staticmethod # Parse video link comments JSON using the 'aid' field in JSON def get_comment_json(bv_json): aid = bv_json['data']["aid"] api_url = f'https://api.bilibili.com/x/v2/reply/main?next=1&type=1&oid={aid}' comment_json = requests.get(api_url).json() return comment_json @staticmethod # Enhanced parsing of video link comments JSON using the 'aid' field in JSON def get_comment_json_to_webui(bv_json): aid = bv_json['data']["aid"] api_url = f'https://api.bilibili.com/x/v2/reply/main?next=1&type=1&oid={aid}' # Determine the current operating system type if platform.system() == "Windows": # Windows platform driver = webdriver.Chrome() else: # Other platforms driver = webdriver.Chrome(ChromeDriverManager().install()) # Provide login time print("Provide 45 seconds for Bilibili login") time.sleep(45) # Open the link driver.get(api_url) # Provide view effect time print("Provide 15 seconds to check the effects") time.sleep(15) # Find the <pre class="brush:php;toolbar:false"> element pre_element = driver.find_element(By.TAG_NAME, 'pre') # Get the text content of the element text_content = pre_element.text # Close WebDriver driver.quit() return text_content @staticmethod # Traverse user information and return basic parameters, preparing for XLSX write-in def get_user_card(mid, cookies): api_url = f'https://account.bilibili.com/api/member/getCardByMid?mid={mid}' try: response = requests.get(api_url, cookies=cookies) user_card_json = response.json() except json.JSONDecodeError: return {"error": "Failed to parse JSON. Ensure a good network environment. Too many API calls might trigger restrictions; try again later."} if 'message' in user_card_json: message = user_card_json['message'] if 'request blocked' in message or 'frequent requests' in message: return {"warning": "Ensure a good network environment. Too many API calls might trigger restrictions; try again later."} return user_card_json class CRC32Checker: '''''''''' # CRC32 cracking # Source: https://github.com/Aruelius/crc32-crack # Author: Aruelius # Note: This section has been slightly adjusted and encapsulated as a class for easier use. ''''''''' CRCPOLYNOMIAL = 0xEDB88320 crctable = [0 for x in range(256)] def __init__(self): self.create_table() def create_table(self): # Create a CRC table for quick CRC value computation for i in range(256): crcreg = i for _ in range(8): if (crcreg & 1) != 0: crcreg = self.CRCPOLYNOMIAL ^ (crcreg >> 1) else: crcreg = crcreg >> 1 self.crctable[i] = crcreg def crc32(self, string): # Compute the CRC32 value for the given string crcstart = 0xFFFFFFFF for i in range(len(str(string))): index = (crcstart ^ ord(str(string)[i])) & 255 crcstart = (crcstart >> 8) ^ self.crctable[index] return crcstart def crc32_last_index(self, string): # Compute the last character CRC table index for a given string crcstart = 0xFFFFFFFF for i in range(len(str(string))): index = (crcstart ^ ord(str(string)[i])) & 255 crcstart = (crcstart >> 8) ^ self.crctable[index] return index def get_crc_index(self, t): # Find the index in the CRC table corresponding to the highest byte value for i in range(256): if self.crctable[i] >> 24 == t: return i return -1 def deep_check(self, i, index): # Deep check based on index and previous CRC32 values to verify the assumption string = "" tc = 0x00 hashcode = self.crc32(i) tc = hashcode & 0xff ^ index[2] if not (tc <= 57 and tc >= 48): return [0] string += str(tc - 48) hashcode = self.crctable[index[2]] ^ (hashcode >> 8) tc = hashcode & 0xff ^ index[1] if not (tc <= 57 and tc >= 48): return [0] string += str(tc - 48) hashcode = self.crctable[index[1]] ^ (hashcode >> 8) tc = hashcode & 0xff ^ index[0] if not (tc <= 57 and tc >= 48): return [0] string += str(tc - 48) hashcode = self.crctable[index[0]] ^ (hashcode >> 8) return [1, string] def main(self, string): # Main function to compute and validate CRC32 for the given string index = [0 for x in range(4)] i = 0 ht = int(f"0x{string}", 16) ^ 0xffffffff for i in range(3, -1, -1): index[3-i] = self.get_crc_index(ht >> (i*8)) snum = self.crctable[index[3-i]] ht ^= snum >> ((3-i)*8) for i in range(100000000): lastindex = self.crc32_last_index(i) if lastindex == index[3]: deepCheckData = self.deep_check(i, index) if deepCheckData[0]: break if i == 100000000: return -1 return f"{i}{deepCheckData[1]}" class Tools: @staticmethod # Get save path and format def get_save(): return os.path.join(os.path.join(os.path.expanduser("~"), "Desktop"), "Bilibili_Video_Analysis_{}.xlsx".format(datetime.now().strftime('%Y-%m-%d'))) @staticmethod # Format timestamp def format_timestamp(timestamp): dt_object = datetime.fromtimestamp(timestamp) formatted_time = dt_object.strftime("%Y-%m-%d %H:%M:%S") return formatted_time @staticmethod # Calculate sentiment score def calculate_sentiment_score(text): s = SnowNLP(text) sentiment_score = s.sentiments return sentiment_score @staticmethod # Generate a word cloud def get_word_cloud(sheet_name: str, workbook: Workbook): sheet = workbook[sheet_name] # Read frequency data words = [] frequencies = [] for row in sheet.iter_rows(min_row=2, values_only=True): words.append(row[0]) frequencies.append(row[1]) system = platform.system() if system == 'Darwin': # macOS font_path = '/System/Library/Fonts/STHeiti Light.ttc' elif system == 'Windows': font_path = 'C:/Windows/Fonts/simhei.ttf' else: # Other OS font_path = 'simhei.ttf' wordcloud = WordCloud(background_color='white', max_words=100, font_path=font_path) word_frequency = dict(zip(words, frequencies)) wordcloud.generate_from_frequencies(word_frequency) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.show() @staticmethod # Generate horizontal statistics chart def get_word_chart(sheet_name: str, workbook): sheet = workbook[sheet_name] words = [] frequencies = [] for row in sheet.iter_rows(min_row=2, values_only=True): words.append(row[0]) frequencies.append(row[1]) system = platform.system() if system == 'Darwin': font_path = '/System/Library/Fonts/STHeiti Light.ttc' elif system == 'Windows': font_path = 'C:/Windows/Fonts/simhei.ttf' else: font_path = 'simhei.ttf' custom_font = fm.FontProperties(fname=font_path) fig, ax = plt.subplots() ax.barh(words, frequencies) ax.set_xlabel("Frequency", fontproperties=custom_font) ax.set_ylabel("Words", fontproperties=custom_font) plt.yticks(fontproperties=custom_font) plt.show() @staticmethod def get_user_info_by_card(user_card_json): info = { 'name': "N/A", 'birthday': "N/A", 'regtime': "N/A", 'fans': "N/A", 'friend': "N/A" } try: info['name'] = user_card_json['card']['name'] info['birthday'] = user_card_json['card']['birthday'] info['regtime'] = Tools.format_timestamp(int(user_card_json['card']['regtime'])) info['fans'] = user_card_json['card']['fans'] info['friend'] = user_card_json['card']['friend'] except KeyError: pass return tuple(info.values()) class BilibiliExcel: @staticmethod # Write video basic information def write_base_info(workbook, bv_json): sheet = workbook.create_sheet(title="Video Info") headers = ["Video Title", "Author", "Publish Time", "Views", "Favorites", "Shares", "Total Bullet Comments", "Comments Count", "Video Description", "Category", "Video Link", "Thumbnail Link"] sheet.append(headers) data = [bv_json["data"]["title"], bv_json["data"]["owner"]["name"], Tools.format_timestamp(bv_json["data"]["pubdate"]), bv_json["data"]["stat"]["view"], bv_json["data"]["stat"]["favorite"], bv_json["data"]["stat"]["share"], bv_json["data"]["stat"]["danmaku"], bv_json["data"]["stat"]["reply"], bv_json["data"]["desc"], bv_json["data"]["tname"], video_url, bv_json["data"]["pic"]] sheet.append(data) @staticmethod def save_workbook(workbook): workbook.save(Tools.get_save()) class PrintInfo: # Print basic information @staticmethod def base_message(): if 'Windows' == platform.system(): os.system('cls') else: os.system('clear') text = ''' ************************************ Bilibili Video Analysis v2023.6.26 Author: Github.com/hoochanlon Project URL: https://github.com/hoochanlon/scripts Features: 1. Analyze and visualize Bilibili video data. Disclaimer: For research and learning purposes only. ************************************ ''' print(text.center(50, ' ')) if __name__ == '__main__': PrintInfo.base_message() while True: video_url = input("Paste the Bilibili video link: ") if re.match(r'.*BV\w+', video_url): break else: print("Invalid link format. Please re-enter.") bv_json = BilibiliAPI.get_bv_json(video_url) workbook = Workbook() workbook.remove(workbook.active) BilibiliExcel.write_base_info(workbook, bv_json) BilibiliExcel.save_workbook(workbook)
Usage Notes:
The above is the detailed content of [Python] A Script for Processing and Analysing Bilibili Video Comments and Bullet Chats. For more information, please follow other related articles on the PHP Chinese website!