Home >Backend Development >Python Tutorial >How to Convert a Pandas Column of Strings to DateTime Format?
When working with Pandas dataframes, you may encounter instances where a column containing date-related data is initially imported as strings. To effectively analyze and manipulate such data, it becomes necessary to convert it to a datetime format.
To convert a Pandas column to datetime, utilize the pd.to_datetime function. This function accepts a string-formatted column and a format parameter that specifies the expected format of the strings. The format parameter should align with the specific format of your data.
To demonstrate, consider the following sample data with a column 'Mycol' containing string-formatted dates:
raw_data = pd.DataFrame({'Mycol': ['05SEP2014:00:00:00.000']})
To convert the 'Mycol' column to datetime using the format '%d%b%Y:%H:%M:%S.%f', use the following code:
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
Now, the 'Mycol' column will be converted to a datetime format, enabling you to perform operations and filtering based on dates.
The above is the detailed content of How to Convert a Pandas Column of Strings to DateTime Format?. For more information, please follow other related articles on the PHP Chinese website!