Building scalable and maintainable models often requires a modular approach, especially when handling shared behaviors or common column types across multiple models. In this blog, we'll walk through how we can modularize models using SQLAlchemy's mixins and annotations.
Why Modularize?
When working on projects, we frequently encounter repetitive tasks such as adding created_at and updated_at timestamps to models or defining common column types like UUID primary keys. Modularizing these concerns into separate components has several benefits:
1. Reusability: Shared behaviors and column definitions can be used across multiple models.
2. Maintainability: Changes in one place propagate to all dependent models.
3. Readability: Clear separation of concerns makes the code easier to understand.
Creating a Timestamp Mixin
Mixins provide reusable logic or fields for models. Let's define a TimestampMixin that automatically adds created_at and updated_at fields to any model that inherits from it.
File: timestamp_mixin.py
from datetime import datetime from sqlalchemy import Column, DateTime from sqlalchemy.ext.declarative import declared_attr class TimestampMixin: @declared_attr def created_at(cls): return Column(DateTime, default=datetime.utcnow, nullable=False) @declared_attr def updated_at(cls): return Column(DateTime, default=datetime.utcnow, onupdate=datetime.utcnow, nullable=False)
Explanation
- @declared_attr: Ensures that the attributes are dynamically added to the inheriting models.
- default and onupdate: Automatically set timestamps for creation and updates.
Defining Common Annotations
SQLAlchemy’s Annotated types, available via Python’s typing.Annotated, let you define reusable column properties. For example, you can define a UUID primary key or a String column with specific constraints.
File: common_annotations.py
from typing import Annotated from uuid import uuid4 from sqlalchemy import String from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.orm import mapped_column uuid4pk = mapped_column(UUID(as_uuid=True), primary_key=True, default=uuid4, nullable=False) ] name = Annotated[ str, mapped_column(String(30), nullable=False) ]
Explanation
- UUID Primary Key: The uuid4pk annotation defines a universally unique identifier for primary keys.
- Name Column: The name annotation ensures a String column with a maximum length of 30 characters and no NULL values.
Building Models with Mixins and Annotations
Using the mixins and annotations, we can define models that inherit shared behavior and properties while keeping the implementation concise and readable.
File: user.py
from datetime import datetime from sqlalchemy import Column, DateTime from sqlalchemy.ext.declarative import declared_attr class TimestampMixin: @declared_attr def created_at(cls): return Column(DateTime, default=datetime.utcnow, nullable=False) @declared_attr def updated_at(cls): return Column(DateTime, default=datetime.utcnow, onupdate=datetime.utcnow, nullable=False)
Explanation
- Declarative Base: The Base serves as the foundation for all SQLAlchemy models.
Benefits of This Approach
1. Clear Separation of Concerns
- timestamp_mixin.py: Contains reusable logic (e.g., timestamps).
- common_annotations.py: Defines common column properties (e.g., UUIDs, strings).
- user.py: Combines these building blocks into concrete models.
2. Ease of Maintenance
- If it is needed to change how timestamps work or update column constraints, it is only needed to modify the timestamp_mixin.py or common_annotations.py files. The changes automatically reflect across all dependent models.
3. Scalability
- As project grows, this structure makes it easier to add new behaviors or field types without introducing redundancy.
Final Thoughts
Modularizing models with SQLAlchemy's mixins and annotations is a good strategy for handling shared functionality and properties. This approach not only reduces duplication but also aligns with best practices for clean, maintainable code.
The above is the detailed content of Modularizing SQLAlchemy Models with Mixins and Annotations. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 English version
Recommended: Win version, supports code prompts!

Dreamweaver Mac version
Visual web development tools

Atom editor mac version download
The most popular open source editor

Zend Studio 13.0.1
Powerful PHP integrated development environment
