Home >Backend Development >Python Tutorial >IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

Patricia Arquette
Patricia ArquetteOriginal
2025-01-03 16:56:39235browse

IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

Hi Community,

In this article, I will introduce my application iris-RAG-Gen .

Iris-RAG-Gen is a generative AI Retrieval-Augmented Generation (RAG) application that leverages the functionality of IRIS Vector Search to personalize ChatGPT with the help of the Streamlit web framework, LangChain, and OpenAI. The application uses IRIS as a vector store.
IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

Application Features

  • Ingest Documents (PDF or TXT) into IRIS
  • Chat with the selected Ingested document
  • Delete Ingested Documents
  • OpenAI ChatGPT

Ingest Documents (PDF or TXT) into IRIS

Follow the Below Steps to Ingest the document:

  • Enter OpenAI Key
  • Select Document (PDF or TXT)
  • Enter Document Description
  • Click on the Ingest Document Button

IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search
 

Ingest Document functionality inserts document details into rag_documents table and creates 'rag_document id' (id of the rag_documents) table to save vector data.

IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

The Python code below will save the selected document into vectors:

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader, TextLoader
from langchain_iris import IRISVector
from langchain_openai import OpenAIEmbeddings
from sqlalchemy import create_engine,text

<span>class RagOpr:</span>
    #Ingest document. Parametres contains file path, description and file type  
    <span>def ingestDoc(self,filePath,fileDesc,fileType):</span>
        embeddings = OpenAIEmbeddings() 
        #Load the document based on the file type
        if fileType == "text/plain":
            loader = TextLoader(filePath)       
        elif fileType == "application/pdf":
            loader = PyPDFLoader(filePath)       
        
        #load data into documents
        documents = loader.load()        
        
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=0)
        #Split text into chunks
        texts = text_splitter.split_documents(documents)
        
        #Get collection Name from rag_doucments table. 
        COLLECTION_NAME = self.get_collection_name(fileDesc,fileType)
               
        # function to create collection_name table and store vector data in it.
        db = IRISVector.from_documents(
            embedding=embeddings,
            documents=texts,
            collection_name = COLLECTION_NAME,
            connection_string=self.CONNECTION_STRING,
        )

    #Get collection name
    <span>def get_collection_name(self,fileDesc,fileType):</span>
        # check if rag_documents table exists, if not then create it 
        with self.engine.connect() as conn:
            with conn.begin():     
                sql = text("""
                    SELECT *
                    FROM INFORMATION_SCHEMA.TABLES
                    WHERE TABLE_SCHEMA = 'SQLUser'
                    AND TABLE_NAME = 'rag_documents';
                    """)
                result = []
                try:
                    result = conn.execute(sql).fetchall()
                except Exception as err:
                    print("An exception occurred:", err)               
                    return ''
                #if table is not created, then create rag_documents table first
                if len(result) == 0:
                    sql = text("""
                        CREATE TABLE rag_documents (
                        description VARCHAR(255),
                        docType VARCHAR(50) )
                        """)
                    try:    
                        result = conn.execute(sql) 
                    except Exception as err:
                        print("An exception occurred:", err)                
                        return ''
        #Insert description value 
        with self.engine.connect() as conn:
            with conn.begin():     
                sql = text("""
                    INSERT INTO rag_documents 
                    (description,docType) 
                    VALUES (:desc,:ftype)
                    """)
                try:    
                    result = conn.execute(sql, {'desc':fileDesc,'ftype':fileType})
                except Exception as err:
                    print("An exception occurred:", err)                
                    return ''
                #select ID of last inserted record
                sql = text("""
                    SELECT LAST_IDENTITY()
                """)
                try:
                    result = conn.execute(sql).fetchall()
                except Exception as err:
                    print("An exception occurred:", err)
                    return ''
        return "rag_document"+str(result[0][0])

 

Type the below SQL command in the management portal to retrieve vector data

SELECT top 5
id, embedding, document, metadata
FROM SQLUser.rag_document2

IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

 

Chat with the selected Ingested document

Select the Document from select chat option section and type question. The application will read the vector data and return the relevant answer
IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search

The Python code below will save the selected document into vectors:

from langchain_iris import IRISVector
from langchain_openai import OpenAIEmbeddings,ChatOpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationSummaryMemory
from langchain.chat_models import ChatOpenAI


<span>class RagOpr:</span>
    <span>def ragSearch(self,prompt,id):</span>
        #Concat document id with rag_doucment to get the collection name
        COLLECTION_NAME = "rag_document"+str(id)
        embeddings = OpenAIEmbeddings() 
        #Get vector store reference
        db2 = IRISVector (
            embedding_function=embeddings,    
            collection_name=COLLECTION_NAME,
            connection_string=self.CONNECTION_STRING,
        )
        #Similarity search
        docs_with_score = db2.similarity_search_with_score(prompt)
        #Prepair the retrieved documents to pass to LLM
        relevant_docs = ["".join(str(doc.page_content)) + " " for doc, _ in docs_with_score]
        #init LLM
        llm = ChatOpenAI(
            temperature=0,    
            model_name="gpt-3.5-turbo"
        )
        #manage and handle LangChain multi-turn conversations
        conversation_sum = ConversationChain(
            llm=llm,
            memory= ConversationSummaryMemory(llm=llm),
            verbose=False
        )
        #Create prompt
        template = f"""
        Prompt: <span>{prompt}
        Relevant Docuemnts: {relevant_docs}
        """</span>
        #Return the answer
        resp = conversation_sum(template)
        return resp['response']

    


For more details, please visit iris-RAG-Gen open exchange application page.

Thanks

The above is the detailed content of IRIS-RAG-Gen: Personalizing ChatGPT RAG Application Powered by IRIS Vector Search. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn