Home >Backend Development >C++ >How Can I Optimize My Number Theoretic Transform (NTT) and Modular Arithmetic for Faster Big Number Squaring?

How Can I Optimize My Number Theoretic Transform (NTT) and Modular Arithmetic for Faster Big Number Squaring?

Patricia Arquette
Patricia ArquetteOriginal
2024-12-30 05:20:09132browse

How Can I Optimize My Number Theoretic Transform (NTT) and Modular Arithmetic for Faster Big Number Squaring?

Modular arithmetics and NTT (finite field DFT) optimizations

Original question:

I wanted to use NTT for fast squaring (see Fast bignum square computation), but the result is slow even for really big numbers .. more than 12000 bits.

My question is:

  1. Is there a way to optimize my NTT transform?
    I did not mean to speed it by parallelism (threads); this is low-level layer only.
  2. Is there a way to speed up my modular arithmetics?

Code:

//---------------------------------------------------------------------------
class fourier_NTT                                    // Number theoretic transform
    {

public:
    DWORD r,L,p,N;
    DWORD W,iW,rN;
    fourier_NTT(){ r=0; L=0; p=0; W=0; iW=0; rN=0; }

    // main interface
    void  NTT(DWORD *dst,DWORD *src,DWORD n=0);               // DWORD dst[n] = fast  NTT(DWORD src[n])
    void iNTT(DWORD *dst,DWORD *src,DWORD n=0);               // DWORD dst[n] = fast INTT(DWORD src[n])

    // Helper functions
    bool init(DWORD n);                                       // init r,L,p,W,iW,rN
    void  NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD w);    // DWORD dst[n] = fast  NTT(DWORD src[n])

    // Only for testing
    void  NTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w);    // DWORD dst[n] = slow  NTT(DWORD src[n])
    void iNTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w);    // DWORD dst[n] = slow INTT(DWORD src[n])

    // DWORD arithmetics
    DWORD shl(DWORD a);
    DWORD shr(DWORD a);

    // Modular arithmetics
    DWORD mod(DWORD a);
    DWORD modadd(DWORD a,DWORD b);
    DWORD modsub(DWORD a,DWORD b);
    DWORD modmul(DWORD a,DWORD b);
    DWORD modpow(DWORD a,DWORD b);
    };

//---------------------------------------------------------------------------
void fourier_NTT:: NTT(DWORD *dst,DWORD *src,DWORD n)
    {
    if (n>0) init(n);
    NTT_fast(dst,src,N,W);
//    NTT_slow(dst,src,N,W);
    }

//---------------------------------------------------------------------------
void fourier_NTT::INTT(DWORD *dst,DWORD *src,DWORD n)
    {
    if (n>0) init(n);
    NTT_fast(dst,src,N,iW);
    for (DWORD i=0;i<N;i++) dst[i]=modmul(dst[i],rN);
       //    INTT_slow(dst,src,N,W);
    }

//---------------------------------------------------------------------------
bool fourier_NTT::init(DWORD n)
    {
    // (max(src[])^2)*n < p else NTT overflow can ocur !!!
    r=2; p=0xC0000001; if ((n<2)||(n>0x10000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x30000000/n; // 32:30 bit best for unsigned 32 bit
//    r=2; p=0x78000001; if ((n<2)||(n>0x04000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x3c000000/n; // 31:27 bit best for signed 32 bit
//    r=2; p=0x00010001; if ((n<2)||(n>0x00000020)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x00000020/n; // 17:16 bit best for 16 bit
//    r=2; p=0x0a000001; if ((n<2)||(n>0x01000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x01000000/n; // 28:25 bit
     N=n;                // size of vectors [DWORDs]
     W=modpow(r,    L);    // Wn for NTT
    iW=modpow(r,p-1-L);    // Wn for INTT
    rN=modpow(n,p-2  );    // scale for INTT
    return true;
    }

//---------------------------------------------------------------------------
void fourier_NTT:: NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD w)
    {
    if (n<=1) { if (n==1) dst[0]=src[0]; return; }
    DWORD i,j,a0,a1,n2=n>>1,w2=modmul(w,w);
    // reorder even,odd
    for (i=0,j=0;i<n2;i++,j+=2) dst[i]=src[j];
    for (    j=1;i<n ;i++,j+=2) dst[i]=src[j];
    // recursion
    NTT_fast(src   ,dst   ,n2,w2);    // even
    NTT_fast(src+n2,dst+n2,n2,w2);    // odd
    // restore results
    for (w2=1,i=0,j=n2;i<n2;i++,j++,w2=modmul(w2,w))
        {
        a0=src[i];
        a1=modmul(src[j],w2);
        dst[i]=modadd(a0,a1);
        dst[j]=modsub(a0,a1);
        }
    }

//---------------------------------------------------------------------------
void fourier_NTT:: NTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w)
    {
    DWORD i,j,wj,wi,a;
    for (wj=1,j=0;j<n;j++)
        {
        a=0;
        for (wi=1,i=0;i<n;i++)
            {
            a=modadd(a,modmul(wi,src[i]));
            wi=modmul(wi,wj);
            }
        dst[j]=a;
        wj=modmul(wj,w);
        }
    }

//---------------------------------------------------------------------------
void fourier_NTT::INTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w)
    {
    DWORD i,j,wi=1,wj=1,a;
    for (wj=1,j=0;j<n;j++)
        {
        a=0;
        for (wi=1,i=0;i<n;i++)
            {
            a=modadd(a,modmul(wi,src[i]));
            wi=modmul(wi,wj);
            }
        dst[j]=modmul(a,rN);
        wj=modmul(wj,iW);
        }
    }

//---------------------------------------------------------------------------
DWORD fourier_NTT::shl(DWORD a) { return (a<<1)&amp;0xFFFFFFFE; }
DWORD fourier_NTT::shr(DWORD a) { return (a>>1)&amp;0x7FFFFFFF; }

//---------------------------------------------------------------------------
DWORD fourier_NTT::mod(DWORD a)
    {
    DWORD bb;

The above is the detailed content of How Can I Optimize My Number Theoretic Transform (NTT) and Modular Arithmetic for Faster Big Number Squaring?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn