


Parsing ISO 8601 Date and Time with Python's dateutil.parser.isoparse
Parsing ISO 8601 date and time strings into Python's datetime type can be challenging, especially when using the Python standard library's strptime.
Solution: Using python-dateutil's isoparse Function
The python-dateutil package offers a convenient solution with its dateutil.parser.isoparse function. Isoparse excels in handling various ISO 8601 formats, including:
- RFC 3339 datetime strings (e.g., "2008-09-03T20:56:35.450686Z")
- Extended ISO 8601 formats (e.g., "2008-09-03T20:56:35.450686")
- Basic ISO 8601 formats (e.g., "20080903T205635.450686")
- Date-only formats (e.g., "20080903")
Examples demonstrating the parsing of various ISO 8601 formats:
import dateutil.parser iso_datetime = "2008-09-03T20:56:35.450686Z" print(dateutil.parser.isoparse(iso_datetime)) # datetime with UTC timezone iso_extended = "2008-09-03T20:56:35.450686" print(dateutil.parser.isoparse(iso_extended)) # datetime without timezone iso_basic = "20080903T205635.450686" print(dateutil.parser.isoparse(iso_basic)) # datetime without timezone iso_date = "20080903" print(dateutil.parser.isoparse(iso_date)) # date
Additional Notes
python-dateutil also offers dateutil.parser.parse, which attempts to interpret invalid ISO 8601 strings. However, for stricter parsing, consider other options like regex or a dedicated ISO 8601 parser.
Python 3.7 introduced datetime.datetime.fromisoformat, which parses a subset of ISO 8601 strings. In Python 3.11, it supports almost all valid ISO 8601 formats. However, it may still differ from isoparse in terms of flexibility and interpretation of certain edge cases.
The above is the detailed content of How can Python's `dateutil.parser.isoparse` efficiently handle various ISO 8601 date and time formats?. For more information, please follow other related articles on the PHP Chinese website!

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

Pythonarraysarecreatedusingthearraymodule,notbuilt-inlikelists.1)Importthearraymodule.2)Specifythetypecode,e.g.,'i'forintegers.3)Initializewithvalues.Arraysofferbettermemoryefficiencyforhomogeneousdatabutlessflexibilitythanlists.

In addition to the shebang line, there are many ways to specify a Python interpreter: 1. Use python commands directly from the command line; 2. Use batch files or shell scripts; 3. Use build tools such as Make or CMake; 4. Use task runners such as Invoke. Each method has its advantages and disadvantages, and it is important to choose the method that suits the needs of the project.

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Mac version
God-level code editing software (SublimeText3)
