Possible Timed Reads from an InputStream
The challenge lies in designing a method called maybeRead that returns the same result as in.read() if data is available within a specified timeout. Specifically, maybeRead returns -2 if no data is available within the given timeout.
Initially, it seems wrapping InputStream in a Reader or InterruptibleChannel could offer a solution, but both only pass through InputStream methods. Additionally, it is critical to avoid any thread spawn during this process.
Despite beliefs that in.available() always returns 0, documentation reveals it provides an estimate of the bytes available for reading without blocking. While this estimate may be underestimated, it catches up on the following call to account for new arrivals.
However, subclasses of InputStream handle their own implementation of available(), and concrete implementations override it to give meaningful values. Hence, simply using is.available() isn't sufficient.
For non-blocking and timeout-less reads, consider the following solutions:
byte[] inputData = new byte[1024]; int result = is.read(inputData, 0, is.available()); // -1 for EOF with no data read.
Or
BufferedReader br = new BufferedReader(new InputStreamReader(System.in, Charset.forName("ISO-8859-1")),1024); // ... // inside some iteration / processing logic: if (br.ready()) { int readCount = br.read(inputData, bufferOffset, inputData.length-bufferOffset); }
For a more intricate solution that maximizes the buffer within a timeout, utilize the below method:
public static int readInputStreamWithTimeout(InputStream is, byte[] b, int timeoutMillis) throws IOException { int bufferOffset = 0; long maxTimeMillis = System.currentTimeMillis() + timeoutMillis; while (System.currentTimeMillis() <p>And use it as follows:</p><pre class="brush:php;toolbar:false">byte[] inputData = new byte[1024]; int readCount = readInputStreamWithTimeout(System.in, inputData, 6000); // 6 second timeout // readCount indicates bytes read; -1 for EOF with no data read.
The above is the detailed content of How to Implement a Timed Read from an InputStream Without Threading?. For more information, please follow other related articles on the PHP Chinese website!

JVM implements the WORA features of Java through bytecode interpretation, platform-independent APIs and dynamic class loading: 1. Bytecode is interpreted as machine code to ensure cross-platform operation; 2. Standard API abstract operating system differences; 3. Classes are loaded dynamically at runtime to ensure consistency.

The latest version of Java effectively solves platform-specific problems through JVM optimization, standard library improvements and third-party library support. 1) JVM optimization, such as Java11's ZGC improves garbage collection performance. 2) Standard library improvements, such as Java9's module system reducing platform-related problems. 3) Third-party libraries provide platform-optimized versions, such as OpenCV.

The JVM's bytecode verification process includes four key steps: 1) Check whether the class file format complies with the specifications, 2) Verify the validity and correctness of the bytecode instructions, 3) Perform data flow analysis to ensure type safety, and 4) Balancing the thoroughness and performance of verification. Through these steps, the JVM ensures that only secure, correct bytecode is executed, thereby protecting the integrity and security of the program.

Java'splatformindependenceallowsapplicationstorunonanyoperatingsystemwithaJVM.1)Singlecodebase:writeandcompileonceforallplatforms.2)Easyupdates:updatebytecodeforsimultaneousdeployment.3)Testingefficiency:testononeplatformforuniversalbehavior.4)Scalab

Java's platform independence is continuously enhanced through technologies such as JVM, JIT compilation, standardization, generics, lambda expressions and ProjectPanama. Since the 1990s, Java has evolved from basic JVM to high-performance modern JVM, ensuring consistency and efficiency of code across different platforms.

How does Java alleviate platform-specific problems? Java implements platform-independent through JVM and standard libraries. 1) Use bytecode and JVM to abstract the operating system differences; 2) The standard library provides cross-platform APIs, such as Paths class processing file paths, and Charset class processing character encoding; 3) Use configuration files and multi-platform testing in actual projects for optimization and debugging.

Java'splatformindependenceenhancesmicroservicesarchitecturebyofferingdeploymentflexibility,consistency,scalability,andportability.1)DeploymentflexibilityallowsmicroservicestorunonanyplatformwithaJVM.2)Consistencyacrossservicessimplifiesdevelopmentand

GraalVM enhances Java's platform independence in three ways: 1. Cross-language interoperability, allowing Java to seamlessly interoperate with other languages; 2. Independent runtime environment, compile Java programs into local executable files through GraalVMNativeImage; 3. Performance optimization, Graal compiler generates efficient machine code to improve the performance and consistency of Java programs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version
Chinese version, very easy to use

SublimeText3 Linux new version
SublimeText3 Linux latest version

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
