Home >Backend Development >Python Tutorial >How to Explode a Pandas DataFrame Column into Multiple Rows?

How to Explode a Pandas DataFrame Column into Multiple Rows?

Susan Sarandon
Susan SarandonOriginal
2024-12-25 09:46:16639browse

How to Explode a Pandas DataFrame Column into Multiple Rows?

How to Unnest (Explode) a Column in a Pandas DataFrame, into Multiple Rows

In Pandas, exploding a column involves transforming data from a single row into multiple rows. This is useful when you have a column containing list-type cells and need to split them into individual rows.

Consider a DataFrame with a column 'B' containing lists:

df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})

Output:

   A       B
0  1  [1, 2]
1  2  [1, 2]

To explode this column 'B,' we present various methods:

Method 0 [Pandas >= 0.25]
Starting from Pandas 0.25, if you need to explode only one column, use the pandas.DataFrame.explode function:

df.explode('B')

Output:

   A  B
0  1  1
1  1  2
3  2  1
4  2  2

Method 1
apply pd.Series (easy to understand but not recommended for performance):

df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})

Method 2
Using repeat with DataFrame constructor:

df = pd.DataFrame({'A': df.A.repeat(df.B.str.len()), 'B': np.concatenate(df.B.values)})

Method 3
Re-create the list:

pd.DataFrame([[x] + [z] for x, y in df.values for z in y], columns=df.columns)

Method 4
Using reindex or loc:

df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))

Method 5
When the list contains only unique values:

from collections import ChainMap
d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A'])))
pd.DataFrame(list(d.items()), columns=df.columns[::-1])

Method 6
Using NumPy for high performance:

newvalues = np.dstack((np.repeat(df.A.values, list(map(len, df.B.values))), np.concatenate(df.B.values)))
pd.DataFrame(data=newvalues[0], columns=df.columns)

Method 7
Using itertools cycle and chain:

from itertools import cycle, chain
l = df.values.tolist()
l1 = [list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l]
pd.DataFrame(list(chain.from_iterable(l1)), columns=df.columns)

Generalizing to Multiple Columns
To handle multiple exploding columns, a function can be defined:

def unnesting(df, explode):
    idx = df.index.repeat(df[explode[0]].str.len())
    df1 = pd.concat([
        pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1)
    df1.index = idx

    return df1.join(df.drop(explode, 1), how='left')

unnesting(df, ['B', 'C'])

Column-Wise Unnesting
To expand a list horizontally, use the pd.DataFrame constructor:

df.join(pd.DataFrame(df.B.tolist(), index=df.index).add_prefix('B_'))

The above is the detailed content of How to Explode a Pandas DataFrame Column into Multiple Rows?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn