Home >Backend Development >Python Tutorial >How to Explode a Pandas DataFrame Column into Multiple Rows?
How to Unnest (Explode) a Column in a Pandas DataFrame, into Multiple Rows
In Pandas, exploding a column involves transforming data from a single row into multiple rows. This is useful when you have a column containing list-type cells and need to split them into individual rows.
Consider a DataFrame with a column 'B' containing lists:
df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]}) Output: A B 0 1 [1, 2] 1 2 [1, 2]
To explode this column 'B,' we present various methods:
Method 0 [Pandas >= 0.25]
Starting from Pandas 0.25, if you need to explode only one column, use the pandas.DataFrame.explode function:
df.explode('B') Output: A B 0 1 1 1 1 2 3 2 1 4 2 2
Method 1
apply pd.Series (easy to understand but not recommended for performance):
df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})
Method 2
Using repeat with DataFrame constructor:
df = pd.DataFrame({'A': df.A.repeat(df.B.str.len()), 'B': np.concatenate(df.B.values)})
Method 3
Re-create the list:
pd.DataFrame([[x] + [z] for x, y in df.values for z in y], columns=df.columns)
Method 4
Using reindex or loc:
df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))
Method 5
When the list contains only unique values:
from collections import ChainMap d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A']))) pd.DataFrame(list(d.items()), columns=df.columns[::-1])
Method 6
Using NumPy for high performance:
newvalues = np.dstack((np.repeat(df.A.values, list(map(len, df.B.values))), np.concatenate(df.B.values))) pd.DataFrame(data=newvalues[0], columns=df.columns)
Method 7
Using itertools cycle and chain:
from itertools import cycle, chain l = df.values.tolist() l1 = [list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l] pd.DataFrame(list(chain.from_iterable(l1)), columns=df.columns)
Generalizing to Multiple Columns
To handle multiple exploding columns, a function can be defined:
def unnesting(df, explode): idx = df.index.repeat(df[explode[0]].str.len()) df1 = pd.concat([ pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1) df1.index = idx return df1.join(df.drop(explode, 1), how='left') unnesting(df, ['B', 'C'])
Column-Wise Unnesting
To expand a list horizontally, use the pd.DataFrame constructor:
df.join(pd.DataFrame(df.B.tolist(), index=df.index).add_prefix('B_'))
The above is the detailed content of How to Explode a Pandas DataFrame Column into Multiple Rows?. For more information, please follow other related articles on the PHP Chinese website!