Home >Backend Development >Python Tutorial >How to Split Comma-Separated Values in a Pandas DataFrame into Separate Rows?
Split (Explode) Pandas Dataframe String Entry to Separate Rows
Problem:
Manipulating a Pandas dataframe containing a column of comma-separated values, the goal is to split each CSV field into individual rows, preserving the original data structure.
Solution:
The recommended solution is to leverage the Pandas Series.explode() or DataFrame.explode() method, introduced in Pandas 0.25.0 and enhanced in Pandas 1.3.0 to support multi-column explode.
To explode a single column, use Series.explode():
df.explode('column_name')
For multiple columns, use DataFrame.explode():
df.explode(['column1', 'column2'])
Example:
df = pd.DataFrame({ 'A': [[0, 1, 2], 'foo', [], [3, 4]], 'B': 1, 'C': [['a', 'b', 'c'], np.nan, [], ['d', 'e']] }) df.explode('A')
Output:
A B C 0 0 1 [a, b, c] 0 1 1 [a, b, c] 0 2 1 [a, b, c] 1 foo 1 NaN 2 NaN 1 [] 3 3 1 [d, e] 3 4 1 [d, e]
For a more generic approach that works for multiple normal and list columns, consider the following function:
def explode(df, lst_cols, fill_value='', preserve_index=False): # Ensure `lst_cols` is list-alike if lst_cols and not isinstance(lst_cols, (list, tuple, np.ndarray, pd.Series)): lst_cols = [lst_cols] # Calculate lengths of lists lens = df[lst_cols[0]].str.len() # Preserve original index values idx = np.repeat(df.index.values, lens) # Create an "exploded" DataFrame res = (pd.DataFrame({ col:np.repeat(df[col].values, lens) for col in df.columns.difference(lst_cols) }, index=idx) .assign(**{col:np.concatenate(df.loc[lens>0, col].values) for col in lst_cols})) # Append rows with empty lists if (lens == 0).any(): res = (res.append(df.loc[lens==0, df.columns.difference(lst_cols)], sort=False) .fillna(fill_value)) # Revert to original index order and reset if requested res = res.sort_index() if not preserve_index: res = res.reset_index(drop=True) return res
Example of exploding a CSV-like column:
df = pd.DataFrame({ 'var1': 'a,b,c d,e,f,x,y'.split(), 'var2': [1, 2] }) explode(df.assign(var1=df.var1.str.split(',')), 'var1')
Output:
var1 var2 0 a 1 1 b 1 2 c 1 3 d 2 4 e 2 5 f 2 6 x 2 7 y 2
The above is the detailed content of How to Split Comma-Separated Values in a Pandas DataFrame into Separate Rows?. For more information, please follow other related articles on the PHP Chinese website!