Recently I decided that I would like to do a quick web scraping and data analysis project. Because my brain likes to come up with big ideas that would take lots of time, I decided to challenge myself to come up with something simple that could viably be done in a few hours.
Here's what I came up with:
As my undergrad degree was originally in Foreign Languages (French and Spanish), I thought it'd be fun to web scrape some language related data. I wanted to use the BeautifulSoup library, which can parse static html but isn't able to deal with dynamic web pages that need onclick events to reveal the whole dataset (ie. clicking on the next page of data if the page is paginated).
I decided on this Wikipedia page of the most commonly spoken languages.
I wanted to do the following:
- Get the html for the page and output to a .txt file
- Use beautiful soup to parse the html file and extract the table data
- Write the table to a .csv file
- Come up with 10 questions I wanted to answer for this dataset using data analysis
- Answer those questions using pandas and a Jupyter Notebook
I decided on splitting out the project into these steps for separation of concern, but also I wanted to avoid making multiple unnecessary requests to get the html from Wikipedia by rerunning the script. Saving the html file and then working with it in a separate script means that you don't need to keep re-requesting the data, as you already have it.
Project Link
The link to my github repo for this project is: https://github.com/gabrielrowan/Foreign-Languages-Analysis
Getting the html
First, I retrieved and output the html. After working with C# and C , it's always a novelty to me how short and concise Python code is ?
url = 'https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers' response = requests.get(url) html = response.text with open("languages_html.txt", "w", encoding="utf-8") as file: file.write(html)
Parsing the html
To parse the html with Beautiful soup and select the table I was interested in, I did:
with open("languages_html.txt", "r", encoding="utf-8") as file: soup = BeautifulSoup(file, 'html.parser') # get table top_languages_table = soup.select_one('.wikitable.sortable.static-row-numbers')
Then, I got the table header text to get the column names for my pandas dataframe:
# get column names columns = top_languages_table.find_all("th") column_titles = [column.text.strip() for column in columns]
After that, I created the dataframe, set the column names, retrieved each table row and wrote each row to the dataframe:
# get table rows table_data = top_languages_table.find_all("tr") # define dataframe df = pd.DataFrame(columns=column_titles) # get table data for row in table_data[1:]: row_data = row.find_all('td') row_data_txt = [row.text.strip() for row in row_data] print(row_data_txt) df.loc[len(df)] = row_data_txt
Note - without using strip() there were n characters in the text which weren't needed.
Last, I wrote the dataframe to a .csv.
Analysing the data
In advance, I'd come up with these questions that I wanted to answer from the data:
- What is the total number of native speakers across all languages in the dataset?
- How many different types of language family are there?
- What is the total number of native speakers per language family?
- What are the top 3 most common language families?
- Create a pie chart showing the top 3 most common language families
- What is the most commonly occuring Language family - branch pair?
- Which languages are Sino-Tibetan in the table?
- Display a bar chart of the native speakers of all Romance and Germanic languages
- What percentage of total native speakers is represented by the top 5 languages?
- Which branch has the most native speakers, and which has the least?
The Results
While I won't go into the code to answer all of these questions, I will go into the 2 ones that involved charts.
Display a bar chart of the native speakers of all Romance and Germanic languages
First, I created a dataframe that only included rows where the branch name was 'Romance' or 'Germanic'
url = 'https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers' response = requests.get(url) html = response.text with open("languages_html.txt", "w", encoding="utf-8") as file: file.write(html)
Then I specified the x axis, y axis and the colour of the bars that I wanted for the chart:
with open("languages_html.txt", "r", encoding="utf-8") as file: soup = BeautifulSoup(file, 'html.parser') # get table top_languages_table = soup.select_one('.wikitable.sortable.static-row-numbers')
This created:
Create a pie chart showing the top 3 most common language families
To create the pie chart, I retrieved the top 3 most common language families and put these in a dataframe.
This code groups gets the total sum of native speakers per language family, sorts them in descending order, and extracts the top 3 entries.
# get column names columns = top_languages_table.find_all("th") column_titles = [column.text.strip() for column in columns]
Then I put the data in a pie chart, specifying the y axis of 'Native Speakers' and a legend, which creates colour coded labels for each language family shown in the chart.
# get table rows table_data = top_languages_table.find_all("tr") # define dataframe df = pd.DataFrame(columns=column_titles) # get table data for row in table_data[1:]: row_data = row.find_all('td') row_data_txt = [row.text.strip() for row in row_data] print(row_data_txt) df.loc[len(df)] = row_data_txt
The code and responses for the rest of the questions can be found here. I used markdown in the notebook to write the questions and their answers.
Next Time:
For my next iteration of a web scraping & data analysis project, I'd like to make things more complicated with:
- Web scraping a dynamic page where more data is revealed on click/ scroll
- Analysing a much bigger dataset, potentially one that needs some data cleaning work before analysis
Final thoughts
Even though it was a quick one, I enjoyed doing this project. It reminded me how useful short, manageable projects can be for getting the practice reps in ? Plus, extracting data from the internet and creating charts from it, even with a small dataset, is fun ?
The above is the detailed content of Web scraping and analysing foreign languages data. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

Dreamweaver Mac version
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function