search
HomeWeb Front-endJS TutorialOnly Javascript cheatsheet you need !

Only Javascript cheatsheet you need !

Differences Between var, let, and const

1. Overview of var, let, and const

Feature var let const
Scope Function-scoped Block-scoped Block-scoped
Re-declaration Allowed within the same scope Not allowed in the same scope Not allowed in the same scope
Re-assignment Allowed Allowed Not allowed after initialization
Initialization Can be declared without initialization Can be declared without initialization Must be initialized at the time of declaration
Hoisting Hoisted but initialized to undefined Hoisted but not initialized Hoisted but not initialized
Feature

var

let const
Type Function Scope Block Scope
var Variables are scoped to the enclosing function. Does not support block scope. A var inside a block (if, for, etc.) leaks into the enclosing function or global scope.
let / const Not function-scoped. Variables are confined to the block they are declared in.
Scope
Function-scoped Block-scoped Block-scoped

Re-declaration

Allowed within the same scope Not allowed in the same scope Not allowed in the same scope
Re-assignment
Allowed Allowed Not allowed after initialization
Initialization
if (true) {
  var x = 10;
  let y = 20;
  const z = 30;
}
console.log(x); // 10 (accessible because of function scope)
console.log(y); // ReferenceError (block-scoped)
console.log(z); // ReferenceError (block-scoped)
Can be declared without initialization Can be declared without initialization Must be initialized at the time of declaration

Hoisting

Hoisted but initialized to undefined Hoisted but not initialized Hoisted but not initialized
2. Scope Differences
Feature var let const
Re-declaration Allowed Not allowed Not allowed
Re-assignment Allowed Allowed Not allowed
Type Function Scope Block Scope
var Variables are scoped to the enclosing function. Does not support block scope. A var inside a block (if, for, etc.) leaks into the enclosing function or global scope.
let / const Not function-scoped. Variables are confined to the block they are declared in.
Example: 3. Re-declaration and Re-assignment
Feature var let const
Re-declaration Allowed Not allowed Not allowed
Re-assignment Allowed Allowed Not allowed

Example:

if (true) {
  var x = 10;
  let y = 20;
  const z = 30;
}
console.log(x); // 10 (accessible because of function scope)
console.log(y); // ReferenceError (block-scoped)
console.log(z); // ReferenceError (block-scoped)

4. Hoisting Behavior

Type Hoisting Behavior
var Hoisted to the top of the scope but initialized as undefined.
let Hoisted but not initialized. Accessing it before declaration causes a ReferenceError.
const Hoisted but not initialized. Must be initialized at the time of declaration.
Type

Hoisting Behavior

var
Hoisted to the top of the scope but initialized as undefined.
let
// Re-declaration
var a = 10;
var a = 20; // Allowed

let b = 30;
// let b = 40; // SyntaxError: Identifier 'b' has already been declared

const c = 50;
// const c = 60; // SyntaxError: Identifier 'c' has already been declared

// Re-assignment
a = 15; // Allowed
b = 35; // Allowed
// c = 55; // TypeError: Assignment to constant variable
Hoisted but not initialized. Accessing it before declaration causes a ReferenceError.

const

Hoisted but not initialized. Must be initialized at the time of declaration.
Example:
Feature let and const
Block Scope Both are confined to the block in which they are declared.
No Hoisting Initialization Both are hoisted but cannot be accessed before initialization.
Better Practice Preferred over var for predictable scoping.

5. Similarities Between let and const

Scenario Recommended Keyword
Re-declare variables or use function scope var (generally avoid unless necessary for legacy code).
Variables that may change let (e.g., counters, flags, intermediate calculations).
Variables that should not change const (e.g., configuration settings, fixed values).
Feature let and const
Block Scope Both are confined to the block in which they are declared.
No Hoisting Initialization Both are hoisted but cannot be accessed before initialization.
Better Practice Preferred over var for predictable scoping.
6. When to Use Which?
Scenario Recommended Keyword
Re-declare variables or use function scope var (generally avoid unless necessary for legacy code).
Variables that may change let (e.g., counters, flags, intermediate calculations).
Variables that should not change const (e.g., configuration settings, fixed values).

7. Explanation of Hoisting

What is Hoisting?

Hoisting is JavaScript's default behavior of moving declarations to the top of their scope during the compile phase.

  • var: Hoisted and initialized to undefined.
  • let / const: Hoisted but not initialized. This creates a temporal dead zone (TDZ) from the start of the block until the declaration is encountered.

Why Hoisting Works This Way?

  1. Compilation Phase: JavaScript first scans the code to create a memory space for variable and function declarations. At this stage:
  • var variables are initialized to undefined.
  • let and const variables are "hoisted" but left uninitialized, hence the TDZ.
  • Function declarations are fully hoisted.
  1. Execution Phase: JavaScript starts executing code line by line. Variables and functions are assigned values during this phase.

8. Summary of Hoisting

Type Hoisting Access Before Declaration
var Hoisted and initialized to undefined. Allowed but value is undefined.
let Hoisted but not initialized. Causes a ReferenceError.
const Hoisted but not initialized. Causes a ReferenceError.
Type
Hoisting Access Before Declaration
var Hoisted and initialized to undefined. Allowed but value is undefined.
let Hoisted but not initialized. Causes a ReferenceError.
const Hoisted but not initialized. Causes a ReferenceError.

Example:

if (true) {
  var x = 10;
  let y = 20;
  const z = 30;
}
console.log(x); // 10 (accessible because of function scope)
console.log(y); // ReferenceError (block-scoped)
console.log(z); // ReferenceError (block-scoped)

Conclusion

  1. Use const whenever possible for variables that do not need reassignment.
  2. Use let for variables that need to be reassigned within the same scope.
  3. Avoid var unless working with legacy code or requiring function-scoped behavior.

JavaScript Data Types

JavaScript has various data types classified into Primitive and Non-Primitive (Reference) types. Here's an explanation of each with examples and differences:


1. Primitive Data Types

Primitive types are immutable, meaning their values cannot be changed after they are created. They are stored directly in memory.

Data Type Example Description
String "hello", 'world' Represents a sequence of characters (text). Enclosed in single (''), double (""), or backticks ().
Number 42, 3.14, NaN Represents both integers and floating-point numbers. Includes NaN (Not-a-Number) and Infinity.
BigInt 123n, 9007199254740991n Used for numbers larger than Number.MAX_SAFE_INTEGER (2^53 - 1). Add n to create a BigInt.
Boolean true, false Represents logical values, used in conditions to represent "yes/no" or "on/off".
Undefined undefined Indicates a variable has been declared but not assigned a value.
Null null Represents an intentional absence of value. Often used to reset or clear a variable.
Symbol Symbol('id') Represents a unique identifier, mainly used as property keys for objects to avoid collisions.
Data Type
Example Description
String "hello", 'world' Represents a sequence of characters (text). Enclosed in single (''), double (""), or backticks ().
Number 42, 3.14, NaN Represents both integers and floating-point numbers. Includes NaN (Not-a-Number) and Infinity.
BigInt 123n, 9007199254740991n Used for numbers larger than Number.MAX_SAFE_INTEGER (2^53 - 1). Add n to create a BigInt.
Boolean true, false Represents logical values, used in conditions to represent "yes/no" or "on/off".
Undefined undefined Indicates a variable has been declared but not assigned a value.
Null null Represents an intentional absence of value. Often used to reset or clear a variable.
Symbol Symbol('id') Represents a unique identifier, mainly used as property keys for objects to avoid collisions.

2. Non-Primitive (Reference) Data Types

Non-primitive types are mutable and stored by reference. They are used to store collections of data or more complex entities.

Data Type Example Description
Object {name: 'John', age: 30} A collection of key-value pairs. Keys are strings (or Symbols), and values can be any type.
Array [1, 2, 3, "apple"] A list-like ordered collection of values. Access elements via index (e.g., array[0]).
Function function greet() {} A reusable block of code that can be executed. Functions are first-class citizens in JavaScript.
Date new Date() Represents date and time. Provides methods for manipulating dates and times.
RegExp /pattern/ Represents regular expressions used for pattern matching and string searching.
Map new Map() A collection of key-value pairs where keys can be of any type, unlike plain objects.
Set new Set([1, 2, 3]) A collection of unique values, preventing duplicates.
WeakMap new WeakMap() Similar to Map, but keys are weakly held, meaning they can be garbage-collected.
WeakSet new WeakSet() Similar to Set, but holds objects weakly to prevent memory leaks.

3. Key Differences Between Primitive and Non-Primitive Types

Aspect Primitive Types Non-Primitive Types
Mutability Immutable: Values cannot be changed. Mutable: Values can be modified.
Storage Stored directly in memory. Stored as a reference to a memory location.
Copy Behavior Copied by value (creates a new value). Copied by reference (points to the same object).
Examples string, number, boolean, etc. object, array, function, etc.

4. Special Cases

typeof Operator

  • typeof null: Returns "object" due to a historical bug in JavaScript, but null is not an object.
  • typeof NaN: Returns "number", even though it means "Not-a-Number."
  • typeof function: Returns "function", which is a subtype of object.

Dynamic Typing

JavaScript allows variables to hold values of different types at runtime:

if (true) {
  var x = 10;
  let y = 20;
  const z = 30;
}
console.log(x); // 10 (accessible because of function scope)
console.log(y); // ReferenceError (block-scoped)
console.log(z); // ReferenceError (block-scoped)

5. Examples for Each Data Type

Primitive Types

// Re-declaration
var a = 10;
var a = 20; // Allowed

let b = 30;
// let b = 40; // SyntaxError: Identifier 'b' has already been declared

const c = 50;
// const c = 60; // SyntaxError: Identifier 'c' has already been declared

// Re-assignment
a = 15; // Allowed
b = 35; // Allowed
// c = 55; // TypeError: Assignment to constant variable

Non-Primitive Types

console.log(a); // undefined (hoisted)
var a = 10;

console.log(b); // ReferenceError (temporal dead zone)
let b = 20;

console.log(c); // ReferenceError (temporal dead zone)
const c = 30;

6. Summary of typeof Results

Expression Result
typeof "hello" "string"
typeof 42 "number"
typeof 123n "bigint"
typeof true "boolean"
typeof undefined "undefined"
typeof null "object"
typeof Symbol() "symbol"
typeof {} "object"
typeof [] "object"
typeof function(){} "function"
Expression

Result
typeof "hello" "string"
typeof 42 "number"
typeof 123n "bigint"
typeof true "boolean"
typeof undefined "undefined"
typeof null "object"
typeof Symbol() "symbol"
typeof {} "object"
typeof [] "object"
typeof function(){} "function"

The above is the detailed content of Only Javascript cheatsheet you need !. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
C   and JavaScript: The Connection ExplainedC and JavaScript: The Connection ExplainedApr 23, 2025 am 12:07 AM

C and JavaScript achieve interoperability through WebAssembly. 1) C code is compiled into WebAssembly module and introduced into JavaScript environment to enhance computing power. 2) In game development, C handles physics engines and graphics rendering, and JavaScript is responsible for game logic and user interface.

From Websites to Apps: The Diverse Applications of JavaScriptFrom Websites to Apps: The Diverse Applications of JavaScriptApr 22, 2025 am 12:02 AM

JavaScript is widely used in websites, mobile applications, desktop applications and server-side programming. 1) In website development, JavaScript operates DOM together with HTML and CSS to achieve dynamic effects and supports frameworks such as jQuery and React. 2) Through ReactNative and Ionic, JavaScript is used to develop cross-platform mobile applications. 3) The Electron framework enables JavaScript to build desktop applications. 4) Node.js allows JavaScript to run on the server side and supports high concurrent requests.

Python vs. JavaScript: Use Cases and Applications ComparedPython vs. JavaScript: Use Cases and Applications ComparedApr 21, 2025 am 12:01 AM

Python is more suitable for data science and automation, while JavaScript is more suitable for front-end and full-stack development. 1. Python performs well in data science and machine learning, using libraries such as NumPy and Pandas for data processing and modeling. 2. Python is concise and efficient in automation and scripting. 3. JavaScript is indispensable in front-end development and is used to build dynamic web pages and single-page applications. 4. JavaScript plays a role in back-end development through Node.js and supports full-stack development.

The Role of C/C   in JavaScript Interpreters and CompilersThe Role of C/C in JavaScript Interpreters and CompilersApr 20, 2025 am 12:01 AM

C and C play a vital role in the JavaScript engine, mainly used to implement interpreters and JIT compilers. 1) C is used to parse JavaScript source code and generate an abstract syntax tree. 2) C is responsible for generating and executing bytecode. 3) C implements the JIT compiler, optimizes and compiles hot-spot code at runtime, and significantly improves the execution efficiency of JavaScript.

JavaScript in Action: Real-World Examples and ProjectsJavaScript in Action: Real-World Examples and ProjectsApr 19, 2025 am 12:13 AM

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

JavaScript and the Web: Core Functionality and Use CasesJavaScript and the Web: Core Functionality and Use CasesApr 18, 2025 am 12:19 AM

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding the JavaScript Engine: Implementation DetailsUnderstanding the JavaScript Engine: Implementation DetailsApr 17, 2025 am 12:05 AM

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python vs. JavaScript: The Learning Curve and Ease of UsePython vs. JavaScript: The Learning Curve and Ease of UseApr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function