Setup:
Libraries Installation and Setup
npm i -d @types/node tsx typescript npx tsc --init
Change tsconfig.json and package.json
// tsconfig.json { "compilerOptions": { "target": "es2016", "module": "ES6", "moduleResolution": "nodenext", "allowImportingTsExtensions": true, "esModuleInterop": true, "forceConsistentCasingInFileNames": true, "strict": true, "skipLibCheck": true, "sourceMap": true, "outDir": "./dist", "types": ["node"] }, "include": ["src/**/*.ts"], "exclude": ["node_modules"] } // package.json { "name": "node-starter", "version": "0.0.0", "type": "module", // This should be set to "module" for using ES6 modules "scripts": { "test": "jest" }, "devDependencies": { "@types/jest": "^29.5.14", "jest": "^29.7.0", "typescript": "^5.7.2" }, "dependencies": { "@types/node": "^22.10.2", "tsx": "^4.19.2" } }
Understanding EventEmitter in Node.js
Node.js uses EventEmitter as a fundamental class for handling events in asynchronous programming. This class allows you to register listeners for specific events and emit those events when needed. By default, EventEmitter processes events in the order that the listeners were added. However, sometimes we might want to prioritize the execution of certain listeners over others. That’s where we can introduce a priority-based event system.
Steps to Create a Priority EventEmitter
-
Inheriting from EventEmitter:
To create a custom event emitter with priority handling, we need to extend the built-in EventEmitter class. This gives us access to all the built-in methods like on, emit, and removeListener.
import EventEmitter from 'events'; export class PriorityEmitter extends EventEmitter { private _listeners: Record void; priority: number }[] >; constructor() { super(); this._listeners = {}; } }
- `PriorityEmitter` extends `EventEmitter`, so it inherits all of its functionality. - We introduce a new internal property `_listeners` to store listeners along with their priorities.
-
Overriding the on Method:
By overriding the on method, we can add custom logic to store the listeners along with their priorities and sort them based on their priority.
on(event: string, listener: (...args: any[]) => void, priority = 0) { if (!this._listeners[event]) this._listeners[event] = []; this._listeners[event].push({ listener, priority }); this._listeners[event].sort((a, b) => b.priority - a.priority); return this; }
- For production usage, consider using other data structures instead of arrays, which maintain order. - When a listener is added using `on`, we push the listener and its priority into the `_listeners` array. - We then sort the listeners in descending order based on the priority. This ensures that higher-priority listeners are executed first. - The default priority is `0` if not specified.
-
Overriding the emit Method:
The emit method triggers the event and executes the listeners. In the overridden method, we first process the listeners from _listeners based on their priority.
emit(event: string, ...args: any[]) { if (this._listeners[event]) { for (const { listener } of this._listeners[event]) { listener(...args); } } return super.emit(event, ...args); }
- For the given event, we iterate over the sorted listeners and call each listener. - After handling the custom priority-based logic, we call the parent class’s `emit` method to ensure the standard behavior is also preserved.
-
Overriding the removeListener Method:
The removeListener method is overridden to ensure that listeners are correctly removed based on their reference. Since we store listeners along with their priorities, we filter out the correct listener.
removeListener(event: string, listener: (...args: any[]) => void) { if (this._listeners[event]) { this._listeners[event] = this._listeners[event].filter( (stored_listener) => stored_listener.listener !== listener ); } super.removeListener(event, listener); return this; }
- We filter the listener array to remove the listener with the exact reference. - Then we call `super.removeListener` to ensure proper cleanup and avoid memory leaks.
How the PriorityEmitter Works
- When an event is emitted, listeners are invoked in the order of their priority. The higher the priority, the earlier it will be executed.
- Listeners with equal priority are executed in the order they were added.
Example Usage
Here’s an example to demonstrate how the PriorityEmitter works in practice:
const pe = new PriorityEmitter(); // Listener with higher priority pe.on('greet', (name: string) => { console.log(`Hello ${name}!`); }, 2); // Listener with lower priority pe.on('greet', (name: string) => { console.log(`Hi, ${name}!`); }, 1); // Emitting the event pe.emit('greet', 'Alice');
Output:
npm i -d @types/node tsx typescript npx tsc --init
- The listener with priority 2 (Hello Alice!) is called first.
- The listener with priority 1 (Hi, Alice!) is called next.
Performance Considerations
- Data Structure Choice: In this basic example, we are using an array to store listeners and sorting them every time a listener is added. This can become inefficient when there are a large number of listeners. A better solution for handling priorities in a performance-critical environment would be to use a max-heap, which allows for efficient insertion and removal operations.
- Use in Production: For production-level applications, consider using more advanced data structures or external libraries that provide priority queues to handle large numbers of events more efficiently.
Complete Code
// tsconfig.json { "compilerOptions": { "target": "es2016", "module": "ES6", "moduleResolution": "nodenext", "allowImportingTsExtensions": true, "esModuleInterop": true, "forceConsistentCasingInFileNames": true, "strict": true, "skipLibCheck": true, "sourceMap": true, "outDir": "./dist", "types": ["node"] }, "include": ["src/**/*.ts"], "exclude": ["node_modules"] } // package.json { "name": "node-starter", "version": "0.0.0", "type": "module", // This should be set to "module" for using ES6 modules "scripts": { "test": "jest" }, "devDependencies": { "@types/jest": "^29.5.14", "jest": "^29.7.0", "typescript": "^5.7.2" }, "dependencies": { "@types/node": "^22.10.2", "tsx": "^4.19.2" } }
The above is the detailed content of How to Create a Custom Priority Event Emitter in Node.js. For more information, please follow other related articles on the PHP Chinese website!

JavaScript core data types are consistent in browsers and Node.js, but are handled differently from the extra types. 1) The global object is window in the browser and global in Node.js. 2) Node.js' unique Buffer object, used to process binary data. 3) There are also differences in performance and time processing, and the code needs to be adjusted according to the environment.

JavaScriptusestwotypesofcomments:single-line(//)andmulti-line(//).1)Use//forquicknotesorsingle-lineexplanations.2)Use//forlongerexplanationsorcommentingoutblocksofcode.Commentsshouldexplainthe'why',notthe'what',andbeplacedabovetherelevantcodeforclari

The main difference between Python and JavaScript is the type system and application scenarios. 1. Python uses dynamic types, suitable for scientific computing and data analysis. 2. JavaScript adopts weak types and is widely used in front-end and full-stack development. The two have their own advantages in asynchronous programming and performance optimization, and should be decided according to project requirements when choosing.

Whether to choose Python or JavaScript depends on the project type: 1) Choose Python for data science and automation tasks; 2) Choose JavaScript for front-end and full-stack development. Python is favored for its powerful library in data processing and automation, while JavaScript is indispensable for its advantages in web interaction and full-stack development.

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Dreamweaver Mac version
Visual web development tools

Atom editor mac version download
The most popular open source editor
