Home >Backend Development >Python Tutorial >MovingMNIST in PyTorch

MovingMNIST in PyTorch

Linda Hamilton
Linda HamiltonOriginal
2024-12-17 04:35:25181browse

Buy Me a Coffee☕

*My post explains Moving MNIST.

MovingMNIST() can use Moving MNIST dataset as shown below:

*Memos:

  • The 1st argument is root(Required-Type:str or pathlib.Path). *An absolute or relative path is possible.
  • The 2nd argument is split(Optional-Default:None-Type:str): *Memos:
    • None, "train" or "test" can be set to it.
    • If it's None, all 20 frames(images) of each video are returned, ignoring split_ratio.
  • The 3rd argument is split_ratio(Optional-Default:10-Type:int): *Memos:
    • If split is "train", data[:, :split_ratio] is returned.
    • If split is "test", data[:, split_ratio:] is returned.
    • If split is None, it's ignored. ignoring split_ratio.
  • The 4th argument is transform(Optional-Default:None-Type:callable).
  • The 5th argument is download(Optional-Default:False-Type:bool): *Memos:
    • If it's True, the dataset is downloaded from the internet to root.
    • If it's True and the dataset is already downloaded, it's extracted.
    • If it's True and the dataset is already downloaded, nothing happens.
    • It should be False if the dataset is already downloaded because it's faster.
    • You can manually download and extract the dataset from here to e.g. data/MovingMNIST/.
from torchvision.datasets import MovingMNIST

all_data = MovingMNIST(
    root="data"
)

all_data = MovingMNIST(
    root="data",
    split=None,
    split_ratio=10,
    download=False,
    transform=None
)

train_data = MovingMNIST(
    root="data",
    split="train"
)

test_data = MovingMNIST(
    root="data",
    split="test"
)

len(all_data), len(train_data), len(test_data)
# (10000, 10000, 10000)

len(all_data[0]), len(train_data[0]), len(test_data[0])
# (20, 10, 10)

all_data
# Dataset MovingMNIST
#     Number of datapoints: 10000
#     Root location: data

all_data.root
# 'data'

print(all_data.split)
# None

all_data.split_ratio
# 10

all_data.download
# <bound method MovingMNIST.download of Dataset MovingMNIST
#     Number of datapoints: 10000
#     Root location: data>

print(all_data.transform)
# None

from torchvision.datasets import MovingMNIST

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 3))

plt.subplot(1, 3, 1)
plt.title("all_data")
plt.imshow(all_data[0].squeeze()[0])

plt.subplot(1, 3, 2)
plt.title("train_data")
plt.imshow(train_data[0].squeeze()[0])

plt.subplot(1, 3, 3)
plt.title("test_data")
plt.imshow(test_data[0].squeeze()[0])

plt.show()

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST

all_data = MovingMNIST(
    root="data",
    split=None
)

train_data = MovingMNIST(
    root="data",
    split="train"
)

test_data = MovingMNIST(
    root="data",
    split="test"
)

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 8))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, image in enumerate(data, start=1):
        plt.subplot(4, 5, i)
        plt.tight_layout(pad=1.0)
        plt.title(i)
        plt.imshow(image)
    plt.show()

show_images(data=all_data[0].squeeze(), main_title="all_data")
show_images(data=train_data[0].squeeze(), main_title="train_data")
show_images(data=test_data[0].squeeze(), main_title="test_data")

MovingMNIST in PyTorch

MovingMNIST in PyTorch

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST

all_data = MovingMNIST(
    root="data",
    split=None
)

train_data = MovingMNIST(
    root="data",
    split="train"
)

test_data = MovingMNIST(
    root="data",
    split="test"
)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 8))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    col = 5
    for i, image in enumerate(data, start=1):
        plt.subplot(4, 5, i)
        plt.tight_layout(pad=1.0)
        plt.title(i)
        plt.imshow(image.squeeze()[0])
        if i == col:
            break
    plt.show()

show_images(data=all_data, main_title="all_data")
show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST
import matplotlib.animation as animation

all_data = MovingMNIST(
    root="data"
)

import matplotlib.pyplot as plt
from IPython.display import HTML

figure, axis = plt.subplots()

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `ArtistAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
images = []
for image in all_data[0].squeeze():
    images.append([axis.imshow(image)])
ani = animation.ArtistAnimation(fig=figure, artists=images,
                                interval=100)
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `ArtistAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `FuncAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
# def animate(i):
#     axis.imshow(all_data[0].squeeze()[i])
#
# ani = animation.FuncAnimation(fig=figure, func=animate,
#                               frames=20, interval=100)
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `FuncAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

# ani.save('result.gif') # Save the animation as a `.gif` file

plt.ioff() # Hide a useless image

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
HTML(ani.to_jshtml()) # Animation operator
# HTML(ani.to_html5_video()) # Animation video
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
# plt.rcParams["animation.html"] = "jshtml" # Animation operator
# plt.rcParams["animation.html"] = "html5" # Animation video
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

MovingMNIST in PyTorch

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST
from ipywidgets import interact, IntSlider

all_data = MovingMNIST(
    root="data"
)

import matplotlib.pyplot as plt
from IPython.display import HTML

def func(i):
    plt.imshow(all_data[0].squeeze()[i])

interact(func, i=(0, 19, 1))
# interact(func, i=IntSlider(min=0, max=19, step=1, value=0))
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Set the start value ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
plt.show()

MovingMNIST in PyTorch

MovingMNIST in PyTorch

The above is the detailed content of MovingMNIST in PyTorch. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn