Home >Backend Development >Python Tutorial >How to Remove Rows with Null Values from a Pandas DataFrame Column?
Dropping Null Values from a Pandas DataFrame Column
To remove rows from a Pandas DataFrame based on null values in a specific column, follow these steps:
1. Identify the Column:
Determine the column(s) in your DataFrame containing the null values you want to remove. In this case, it is the "EPS" column.
2. Use the dropna() Method:
The dropna() method allows you to drop rows based on specific conditions. To drop rows where the "EPS" column is null, use the following syntax:
df = df.dropna(subset=['EPS'])
3. Optional: Specify the Axis (Rows vs. Columns):
By default, dropna() drops rows with null values. If you want to drop columns instead, specify axis=1 as an additional argument:
df = df.dropna(subset=['EPS'], axis=1)
Example:
Consider the DataFrame provided in the question:
df = pd.DataFrame({ 'STK_ID': [601166, 600036, 600016, 601009, 601939, 000001], 'EPS': [np.nan, np.nan, 4.3, np.nan, 2.5, np.nan], 'cash': [np.nan, 12, np.nan, np.nan, np.nan, np.nan] })
Applying the dropna() method results in the following DataFrame:
df.dropna(subset=['EPS']) STK_ID EPS cash 0 600016 4.3 NaN 1 601939 2.5 NaN
The above is the detailed content of How to Remove Rows with Null Values from a Pandas DataFrame Column?. For more information, please follow other related articles on the PHP Chinese website!