Home >Backend Development >Python Tutorial >How to Remove Rows with Null Values from a Pandas DataFrame Column?

How to Remove Rows with Null Values from a Pandas DataFrame Column?

Mary-Kate Olsen
Mary-Kate OlsenOriginal
2024-12-17 00:32:24539browse

How to Remove Rows with Null Values from a Pandas DataFrame Column?

Dropping Null Values from a Pandas DataFrame Column

To remove rows from a Pandas DataFrame based on null values in a specific column, follow these steps:

1. Identify the Column:
Determine the column(s) in your DataFrame containing the null values you want to remove. In this case, it is the "EPS" column.

2. Use the dropna() Method:
The dropna() method allows you to drop rows based on specific conditions. To drop rows where the "EPS" column is null, use the following syntax:

df = df.dropna(subset=['EPS'])

3. Optional: Specify the Axis (Rows vs. Columns):
By default, dropna() drops rows with null values. If you want to drop columns instead, specify axis=1 as an additional argument:

df = df.dropna(subset=['EPS'], axis=1)

Example:

Consider the DataFrame provided in the question:

df = pd.DataFrame({
    'STK_ID': [601166, 600036, 600016, 601009, 601939, 000001],
    'EPS': [np.nan, np.nan, 4.3, np.nan, 2.5, np.nan],
    'cash': [np.nan, 12, np.nan, np.nan, np.nan, np.nan]
})

Applying the dropna() method results in the following DataFrame:

df.dropna(subset=['EPS'])

   STK_ID  EPS  cash
0  600016   4.3   NaN
1  601939   2.5   NaN

The above is the detailed content of How to Remove Rows with Null Values from a Pandas DataFrame Column?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn