


String Memory Usage in Go
Many developers faced a surprising observation when optimizing code involving maps and strings in Go. Maps are a fundamental data structure in Go, and the choice of value type can significantly impact performance.
In a scenario where a map stores a large number of elements (50 million), each with a value of either "A" or "B," it would seem logical to use a map[string]bool over a map[string]string. However, contrary to expectations, using unsafe.Sizeof() to measure the memory consumption of these maps revealed no difference.
Understanding the Results
The key to unraveling this apparent paradox lies in understanding how unsafe.Sizeof() operates in Go. unsafe.Sizeof() measures the shallow size of a value, meaning it only accounts for the size of the value itself, not any memory referenced by the value.
In Go, maps are implemented as pointers, which explains the consistent size of map[string]bool and map[string]string reported by unsafe.Sizeof(). Both maps simply hold a pointer to the actual data structure containing the key-value pairs.
Strings in Go are more intricate. They are represented by a header containing a pointer to the underlying byte sequence and its length. unsafe.Sizeof() measures the size of this header, which remains the same regardless of the string's length.
Deep-Diving into Memory Consumption
To obtain a more accurate measurement of a map's memory requirements, it is necessary to delve deeper into the data structure. This can be achieved through reflection, as demonstrated in the StackOverflow thread "How much memory do Go maps reserve?".
For strings, the actual memory usage can be calculated as the sum of the string's byte length and the size of the string header.
Optimizing String Memory
It is crucial to consider the possibility of memory waste due to string slicing. When a string slice is created, it inherits a reference to the original string's backing array. Therefore, even if the original string is no longer used, the backing array remains in memory to support the string slice.
In conclusion, optimizing string memory usage in Go involves understanding the underlying memory layout of maps and strings, and adopting techniques that minimize unnecessary memory retention.
The above is the detailed content of Why Does `unsafe.Sizeof()` Show No Memory Difference Between `map[string]bool` and `map[string]string` in Go?. For more information, please follow other related articles on the PHP Chinese website!

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

This article demonstrates creating mocks and stubs in Go for unit testing. It emphasizes using interfaces, provides examples of mock implementations, and discusses best practices like keeping mocks focused and using assertion libraries. The articl

This article explores Go's custom type constraints for generics. It details how interfaces define minimum type requirements for generic functions, improving type safety and code reusability. The article also discusses limitations and best practices

The article discusses Go's reflect package, used for runtime manipulation of code, beneficial for serialization, generic programming, and more. It warns of performance costs like slower execution and higher memory use, advising judicious use and best

The article discusses using table-driven tests in Go, a method that uses a table of test cases to test functions with multiple inputs and outcomes. It highlights benefits like improved readability, reduced duplication, scalability, consistency, and a

This article explores using tracing tools to analyze Go application execution flow. It discusses manual and automatic instrumentation techniques, comparing tools like Jaeger, Zipkin, and OpenTelemetry, and highlighting effective data visualization

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
