Home >Web Front-end >JS Tutorial >JavaScript Interview Cheat Sheet - Part 2

JavaScript Interview Cheat Sheet - Part 2

Patricia Arquette
Patricia ArquetteOriginal
2024-12-15 07:32:10975browse

JavaScript Interview Cheat Sheet - Part 2

Common LeetCode Patterns

// Two Pointers - In-place array modification
const modifyArray = (arr) => {
    let writePointer = 0;
    for (let readPointer = 0; readPointer < arr.length; readPointer++) {
        if (/* condition */) {
            [arr[writePointer], arr[readPointer]] = [arr[readPointer], arr[writePointer]];
            writePointer++;
        }
    }
    return writePointer; // Often returns new length or modified position
};

// Fast and Slow Pointers (Floyd's Cycle Detection)
const hasCycle = (head) => {
    let slow = head, fast = head;
    while (fast && fast.next) {
        slow = slow.next;
        fast = fast.next.next;
        if (slow === fast) return true;
    }
    return false;
};

// Sliding Window - Fixed Size
const fixedSlidingWindow = (arr, k) => {
    let sum = 0;
    // Initialize first window
    for (let i = 0; i < k; i++) {
        sum += arr[i];
    }

    let maxSum = sum;
    // Slide window
    for (let i = k; i < arr.length; i++) {
        sum = sum - arr[i - k] + arr[i];
        maxSum = Math.max(maxSum, sum);
    }
    return maxSum;
};

// Sliding Window - Variable Size
const varSlidingWindow = (arr, target) => {
    let start = 0, sum = 0, minLen = Infinity;

    for (let end = 0; end < arr.length; end++) {
        sum += arr[end];
        while (sum >= target) {
            minLen = Math.min(minLen, end - start + 1);
            sum -= arr[start];
            start++;
        }
    }

    return minLen === Infinity ? 0 : minLen;
};

// BFS - Level Order Traversal
const levelOrder = (root) => {
    if (!root) return [];
    const result = [];
    const queue = [root];

    while (queue.length) {
        const levelSize = queue.length;
        const currentLevel = [];

        for (let i = 0; i < levelSize; i++) {
            const node = queue.shift();
            currentLevel.push(node.val);

            if (node.left) queue.push(node.left);
            if (node.right) queue.push(node.right);
        }
        result.push(currentLevel);
    }
    return result;
};

// DFS - Recursive Template
const dfs = (root) => {
    const result = [];

    const traverse = (node) => {
        if (!node) return;

        // Pre-order
        result.push(node.val);

        traverse(node.left);
        // In-order would be here
        traverse(node.right);
        // Post-order would be here
    };

    traverse(root);
    return result;
};

// Backtracking Template
const backtrack = (nums) => {
    const result = [];

    const bt = (path, choices) => {
        if (/* ending condition */) {
            result.push([...path]);
            return;
        }

        for (let i = 0; i < choices.length; i++) {
            // Make choice
            path.push(choices[i]);
            // Recurse
            bt(path, /* remaining choices */);
            // Undo choice
            path.pop();
        }
    };

    bt([], nums);
    return result;
};

// Dynamic Programming - Bottom Up Template
const dpBottomUp = (n) => {
    const dp = new Array(n + 1).fill(0);
    dp[0] = 1; // Base case

    for (let i = 1; i <= n; i++) {
        for (let j = 0; j < i; j++) {
            dp[i] += dp[j] * /* some calculation */;
        }
    }

    return dp[n];
};

// Dynamic Programming - Top Down Template
const dpTopDown = (n) => {
    const memo = new Map();

    const dp = (n) => {
        if (n <= 1) return 1;
        if (memo.has(n)) return memo.get(n);

        let result = 0;
        for (let i = 0; i < n; i++) {
            result += dp(i) * /* some calculation */;
        }

        memo.set(n, result);
        return result;
    };

    return dp(n);
};

// Monotonic Stack Template
const monotonicStack = (arr) => {
    const stack = []; // [index, value]
    const result = new Array(arr.length).fill(-1);

    for (let i = 0; i < arr.length; i++) {
        while (stack.length && stack[stack.length - 1][1] > arr[i]) {
            const [prevIndex, _] = stack.pop();
            result[prevIndex] = i - prevIndex;
        }
        stack.push([i, arr[i]]);
    }
    return result;
};

// Prefix Sum
const prefixSum = (arr) => {
    const prefix = [0];
    for (let i = 0; i < arr.length; i++) {
        prefix.push(prefix[prefix.length - 1] + arr[i]);
    }
    // Sum of range [i, j] = prefix[j + 1] - prefix[i]
    return prefix;
};

// Binary Search Variations
const binarySearchLeftmost = (arr, target) => {
    let left = 0, right = arr.length;
    while (left < right) {
        const mid = Math.floor((left + right) / 2);
        if (arr[mid] < target) left = mid + 1;
        else right = mid;
    }
    return left;
};

const binarySearchRightmost = (arr, target) => {
    let left = 0, right = arr.length;
    while (left < right) {
        const mid = Math.floor((left + right) / 2);
        if (arr[mid] <= target) left = mid + 1;
        else right = mid;
    }
    return left - 1;
};

// Trie Operations
class TrieNode {
    constructor() {
        this.children = new Map();
        this.isEndOfWord = false;
    }
}

class Trie {
    constructor() {
        this.root = new TrieNode();
    }

    insert(word) {
        let node = this.root;
        for (const char of word) {
            if (!node.children.has(char)) {
                node.children.set(char, new TrieNode());
            }
            node = node.children.get(char);
        }
        node.isEndOfWord = true;
    }

    search(word) {
        let node = this.root;
        for (const char of word) {
            if (!node.children.has(char)) return false;
            node = node.children.get(char);
        }
        return node.isEndOfWord;
    }

    startsWith(prefix) {
        let node = this.root;
        for (const char of prefix) {
            if (!node.children.has(char)) return false;
            node = node.children.get(char);
        }
        return true;
    }
}

// Union Find (Disjoint Set)
class UnionFind {
    constructor(n) {
        this.parent = Array.from({length: n}, (_, i) => i);
        this.rank = new Array(n).fill(0);
    }

    find(x) {
        if (this.parent[x] !== x) {
            this.parent[x] = this.find(this.parent[x]); // Path compression
        }
        return this.parent[x];
    }

    union(x, y) {
        let rootX = this.find(x);
        let rootY = this.find(y);

        if (rootX !== rootY) {
            if (this.rank[rootX] < this.rank[rootY]) {
                [rootX, rootY] = [rootY, rootX];
            }
            this.parent[rootY] = rootX;
            if (this.rank[rootX] === this.rank[rootY]) {
                this.rank[rootX]++;
            }
        }
    }
}

Common Time/Space Complexity Patterns

// O(1) - Constant
Array.push(), Array.pop(), Map.set(), Map.get()

// O(log n) - Logarithmic
Binary Search, Balanced BST operations

// O(n) - Linear
Array traversal, Linear Search

// O(n log n) - Linearithmic
Efficient sorting (Array.sort())

// O(n²) - Quadratic
Nested loops, Simple sorting algorithms

// O(2ⁿ) - Exponential
Recursive solutions without memoization

The above is the detailed content of JavaScript Interview Cheat Sheet - Part 2. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn