Home >Backend Development >Python Tutorial >How Can I Replace NaN Values in a Pandas DataFrame Column?

How Can I Replace NaN Values in a Pandas DataFrame Column?

Mary-Kate Olsen
Mary-Kate OlsenOriginal
2024-12-14 21:56:12612browse

How Can I Replace NaN Values in a Pandas DataFrame Column?

Replacement of NaN Values in Dataframe Column

Encountering NaN (Not-a-Number) values in a dataframe column can lead to errors when applying functions. To address this, Pandas provides a convenient solution using either DataFrame.fillna() or Series.fillna().

Example:

Consider a Pandas Dataframe with NaN values in the "Amount" column:

import pandas as pd

df = pd.DataFrame({
    "itm": [420, 421, 421, 421, 421, 485, 485, 485, 485, 489, 489],
    "Date": ['2012-09-30', '2012-09-09', '2012-09-16', '2012-09-23', '2012-09-09', '2012-09-16', '2012-09-23', '2012-09-30', '2012-09-09', '2012-09-16'],
    "Amount": [65211, 29424, 29877, 30990, 61303, 71781, np.nan, 11072, 113702, 64731, np.nan]
})

To replace the NaN values in the "Amount" column with a specific value, use fillna():

df["Amount"] = df["Amount"].fillna(0)

Alternatively, you can pass a dictionary with the desired replacement values for specific columns:

df = df.fillna({
    "Amount": 0
})

This will replace all NaN values in the "Amount" column with 0. If you want to replace NaN values with a different value or values, simply specify the desired replacement in the dictionary.

The above is the detailed content of How Can I Replace NaN Values in a Pandas DataFrame Column?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn