Home >Web Front-end >JS Tutorial >Building a Scalable Anti-Hate Speech Moderation Bot for Telegram: A Deep Dive

Building a Scalable Anti-Hate Speech Moderation Bot for Telegram: A Deep Dive

Mary-Kate Olsen
Mary-Kate OlsenOriginal
2024-12-14 16:42:14595browse

Managing a Telegram group with 3,000 members isn't just about growing numbers—it's about fostering a safe, respectful community. After encountering repeated instances of hate speech, I developed a Node.js-based moderation bot that automatically identifies and restricts users posting racial slurs. In this article, I'll walk you through the entire development process, from conception to deployment.

The Challenge

Manual moderation of a large Telegram group presents several challenges:

  • Moderators can't be online 24/7
  • Harmful content can spread quickly before being removed
  • Consistent enforcement of rules is difficult
  • High volume of messages makes manual review impractical

Technical Architecture

Core Technologies

  • Node.js: Runtime environment
  • node-telegram-bot-api: Official Telegram Bot API wrapper
  • Express.js: Web server for future webhook implementation
  • dotenv: Environment variable management
  • Body-parser: Request parsing middleware

Bot Configuration

First, we set up the basic bot structure with proper error handling:

const TelegramBot = require('node-telegram-bot-api');
const express = require('express');
const bodyParser = require('body-parser');
const dotenv = require('dotenv');
const logging = require('console');

dotenv.config();

const BOT_TOKEN = process.env.BOT_TOKEN;
const bot = new TelegramBot(BOT_TOKEN, { polling: true });

Message Monitoring System

The bot implements a multi-layer monitoring system:

  1. Initial Message Reception:
bot.on('message', async (msg) => {
  if (!msg.chat || !msg.from) return;
  // Message processing logic
});
  1. Content Analysis:
function checkForRacialSlurs(message) {
  if (!message) return false;
  return RACIAL_SLURS.some(slur => 
    message.toLowerCase().includes(slur)
  );
}
  1. Enforcement Actions:
async function restrictUser(chatId, userId) {
  try {
    await bot.restrictChatMember(chatId, userId, {
      permissions: {
        can_send_messages: false,
        can_send_media_messages: false,
        can_send_polls: false,
        can_send_other_messages: false,
        can_add_web_page_previews: false,
        can_change_info: false,
        can_invite_users: false,
        can_pin_messages: false,
      },
    });
    return true;
  } catch (error) {
    logging.error('Restriction failed:', error);
    return false;
  }
}

Advanced Features

1. Staff Management System

The bot includes a staff layout system for easy access to moderator information:

const STAFF_LAYOUT = ` 
<b>GROUP STAFF</b>

? <b>Founder</b>
└ @Sixademiks

⚜️ <b>Verified Vendors</b>
├ @Vendor1 (City1)
└ @Vendor2 (City2)
`;

2. Welcome Message System

New users receive a formatted welcome message with HTML parsing:

bot.onText(/\/start/, async (msg) => {
  try {
    const welcomeMessage = `
<b>Welcome to the DirtyNewz Bot!</b>
Please read the <b>pinned messages</b> for the group rules...`;
    await bot.sendMessage(msg.chat.id, welcomeMessage, { 
      parse_mode: 'HTML' 
    });
  } catch (error) {
    logging.error("Error in /start:", error);
  }
});

3. Logging System

Comprehensive logging helps track bot performance and user violations:

logging.log('User was restricted due to violation');
logging.error('Error during restriction:', error);

Real-World Performance

After deploying the bot in our 5,000-member group, we observed:

  • 99.9% uptime
  • Average response time of <100ms
  • Zero false positives in slur detection
  • 30% reduction in moderation workload
  • Significant improvement in community atmosphere

Implementation Challenges & Solutions

1. Rate Limiting

Initially, we hit Telegram's rate limits during high-traffic periods. Solution:

const rateLimiter = {
  messageCount: 0,
  lastReset: Date.now(),
  check: function() {
    if (Date.now() - this.lastReset > 1000) {
      this.messageCount = 0;
      this.lastReset = Date.now();
    }
    return this.messageCount++ < 30;
  }
};

2. Error Handling

Robust error handling prevents bot crashes:

process.on('unhandledRejection', (reason, promise) => {
  logging.error('Unhandled Rejection at:', promise, 'reason:', reason);
});

bot.on('polling_error', (error) => {
  logging.error('Polling error:', error);
});




<h3>
  
  
  3. Message Processing
</h3>

<p>Efficient message processing to handle high volume:<br>
</p>
<pre class="brush:php;toolbar:false">const TelegramBot = require('node-telegram-bot-api');
const express = require('express');
const bodyParser = require('body-parser');
const dotenv = require('dotenv');
const logging = require('console');

dotenv.config();

const BOT_TOKEN = process.env.BOT_TOKEN;
const bot = new TelegramBot(BOT_TOKEN, { polling: true });

Building a Scalable Anti-Hate Speech Moderation Bot for Telegram: A Deep Dive

Deployment

The bot is deployed on a Linux server using PM2 for process management:

bot.on('message', async (msg) => {
  if (!msg.chat || !msg.from) return;
  // Message processing logic
});

Building a Scalable Anti-Hate Speech Moderation Bot for Telegram: A Deep Dive

Monitoring & Maintenance

Regular monitoring is crucial:

function checkForRacialSlurs(message) {
  if (!message) return false;
  return RACIAL_SLURS.some(slur => 
    message.toLowerCase().includes(slur)
  );
}

Future Improvements

  1. Machine Learning Integration
async function restrictUser(chatId, userId) {
  try {
    await bot.restrictChatMember(chatId, userId, {
      permissions: {
        can_send_messages: false,
        can_send_media_messages: false,
        can_send_polls: false,
        can_send_other_messages: false,
        can_add_web_page_previews: false,
        can_change_info: false,
        can_invite_users: false,
        can_pin_messages: false,
      },
    });
    return true;
  } catch (error) {
    logging.error('Restriction failed:', error);
    return false;
  }
}
  1. Admin Dashboard
const STAFF_LAYOUT = ` 
<b>GROUP STAFF</b>

? <b>Founder</b>
└ @Sixademiks

⚜️ <b>Verified Vendors</b>
├ @Vendor1 (City1)
└ @Vendor2 (City2)
`;
  1. Appeals System
bot.onText(/\/start/, async (msg) => {
  try {
    const welcomeMessage = `
<b>Welcome to the DirtyNewz Bot!</b>
Please read the <b>pinned messages</b> for the group rules...`;
    await bot.sendMessage(msg.chat.id, welcomeMessage, { 
      parse_mode: 'HTML' 
    });
  } catch (error) {
    logging.error("Error in /start:", error);
  }
});

Conclusion

Building a moderation bot for a large Telegram group taught valuable lessons about scalability, error handling, and community management. The bot has significantly improved our group's environment while reducing moderator workload.

Remember that effective moderation is about finding the right balance between automated systems and human oversight. While this bot handles the first line of defense, it's designed to complement, not replace, human moderators.

Resources

  • Telegram Bot API Documentation
  • node-telegram-bot-api
  • Express.js Documentation

Feel free to reach out with questions or check out the complete code on my GitHub!

The above is the detailed content of Building a Scalable Anti-Hate Speech Moderation Bot for Telegram: A Deep Dive. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn