How to achieve the theoretical maximum of 4 FLOPs per cycle?
It is theoretically possible to achieve a peak performance of 4 floating-point operations (double precision) per cycle on modern x86-64 Intel CPUs, by utilizing the following techniques:
Optimizing Code for SSE instructions
- Use SSE (Streaming SIMD Extensions) instructions, which enable parallel processing of multiple data elements.
- Ensure that the code is properly aligned for optimal SSE performance.
Loop unrolling and interleaving
- Unroll inner loops to improve instruction-level parallelism.
- Interleave multiplies and adds to take advantage of the CPU's pipelining capabilities.
Grouping operations in threes
- Arrange operations in groups of three to match the execution units on some Intel CPUs. This allows for alternating between add and mul instructions, maximizing throughput.
Avoiding unnecessary stalls and dependencies
- Minimize data dependencies between instructions to avoid stalls.
- Use compiler optimizations (-O3 or higher) to help identify and eliminate unnecessary dependencies.
Example code
The following code snippet demonstrates how to achieve close to peak performance on Intel Core i5 and Core i7 CPUs:
#include <emmintrin.h> #include <omp.h> #include <iostream> using namespace std; typedef unsigned long long uint64; double test_dp_mac_SSE(double x, double y, uint64 iterations) { register __m128d r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, rA, rB, rC, rD, rE, rF; // Generate starting data. r0 = _mm_set1_pd(x); r1 = _mm_set1_pd(y); r8 = _mm_set1_pd(-0.0); r2 = _mm_xor_pd(r0, r8); r3 = _mm_or_pd(r0, r8); r4 = _mm_andnot_pd(r8, r0); r5 = _mm_mul_pd(r1, _mm_set1_pd(0.37796447300922722721)); r6 = _mm_mul_pd(r1, _mm_set1_pd(0.24253562503633297352)); r7 = _mm_mul_pd(r1, _mm_set1_pd(4.1231056256176605498)); r8 = _mm_add_pd(r0, _mm_set1_pd(0.37796447300922722721)); r9 = _mm_add_pd(r1, _mm_set1_pd(0.24253562503633297352)); rA = _mm_sub_pd(r0, _mm_set1_pd(4.1231056256176605498)); rB = _mm_sub_pd(r1, _mm_set1_pd(4.1231056256176605498)); rC = _mm_set1_pd(1.4142135623730950488); rD = _mm_set1_pd(1.7320508075688772935); rE = _mm_set1_pd(0.57735026918962576451); rF = _mm_set1_pd(0.70710678118654752440); uint64 iMASK = 0x800fffffffffffffull; __m128d MASK = _mm_set1_pd(*(double*)&iMASK); __m128d vONE = _mm_set1_pd(1.0); uint64 c = 0; while (c </iostream></omp.h></emmintrin.h>
The above is the detailed content of How to Achieve 4 FLOPs Per Cycle on Modern x86-64 Intel CPUs?. For more information, please follow other related articles on the PHP Chinese website!

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.