Caltech in PyTorch

Mary-Kate Olsen
Mary-Kate OlsenOriginal
2024-12-12 10:27:091053browse

Buy Me a Coffee☕

*My post explains Caltech 101.

Caltech101() can use Caltech 101 dataset as shown below:

*Memos:

  • The 1st argument is root(Required-Type:str or pathlib.Path). *An absolute or relative path is possible.
  • The 2nd argument is target_type(Optional-Default:"category"-Type:str or tuple or list of str): *Memos:
    • "category" and/or "annotation" can be set to it.
    • The 8.677 images with the labels from 101 categories(classes) and/or with annotations are returned.
  • The 3rd argument is transform(Optional-Default:None-Type:callable).
  • The 4th argument is target_transform(Optional-Default:None-Type:callable).
  • The 5th argument is download(Optional-Default:False-Type:bool): *Memos:
    • If it's True, the dataset is downloaded from the internet and extracted(unzipped) to root.
    • If it's True and the dataset is already downloaded, it's extracted.
    • If it's True and the dataset is already downloaded and extracted, nothing happens.
    • It should be False if the dataset is already downloaded and extracted because it's faster.
    • gdown is required to download the dataset.
    • You can manually download and extract the dataset(101_ObjectCategories.tar.gz and Annotations.tar) from here to data/caltech101/.
  • About the categories(labels) of the image indices, Faces(0) is 0~434, Faces_easy(1) is 435~869, Leopards(2) is 870~1069, Motorbikes(3) is 1070~1867, accordion(4) is 1868~1922, airplanes(5) is 1923~2722, anchor(6) is 2723~2764, ant(7) is 2765~2806, barrel(8) is 2807~2853, bass(9) is 2854~2907, etc.
from torchvision.datasets import Caltech101

category_data = Caltech101(
    root="data"
)

category_data = Caltech101(
    root="data",
    target_type="category",
    transform=None,
    target_transform=None,
    download=False
)

annotation_data = Caltech101(
    root="data",
    target_type="annotation"
)

all_data = Caltech101(
    root="data",
    target_type=["category", "annotation"]
)

len(category_data), len(annotation_data), len(all_data)
# (8677, 8677, 8677)

category_data
# Dataset Caltech101
#     Number of datapoints: 8677
#     Root location: data\caltech101
#     Target type: ['category']

category_data.root
# 'data/caltech101'

category_data.target_type
# ['category']

print(category_data.transform)
# None

print(category_data.target_transform)
# None

category_data.download
# <bound method Caltech101.download of Dataset Caltech101
#     Number of datapoints: 8677
#     Root location: data\caltech101
#     Target type: ['category']>

len(category_data.categories)
# 101

category_data.categories
# ['Faces', 'Faces_easy', 'Leopards', 'Motorbikes', 'accordion', 
#  'airplanes', 'anchor', 'ant', 'barrel', 'bass', 'beaver',
#  'binocular', 'bonsai', 'brain', 'brontosaurus', 'buddha',
#  'butterfly', 'camera', 'cannon', 'car_side', 'ceiling_fan',
#  'cellphone', 'chair', 'chandelier', 'cougar_body', 'cougar_face', ...]

len(category_data.annotation_categories)
# 101

category_data.annotation_categories
# ['Faces_2', 'Faces_3', 'Leopards', 'Motorbikes_16', 'accordion',
#  'Airplanes_Side_2', 'anchor', 'ant', 'barrel', 'bass',
#  'beaver', 'binocular', 'bonsai', 'brain', 'brontosaurus',
#  'buddha', 'butterfly', 'camera', 'cannon', 'car_side',
#  'ceiling_fan', 'cellphone', 'chair', 'chandelier', 'cougar_body', ...]

category_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=510x337>, 0)

category_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=519x343>, 0)

category_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=492x325>, 0)

category_data[435]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=290x334>, 1)

category_data[870]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=192x128>, 2)

annotation_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=510x337>,
#  array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...],
#         [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]]))

annotation_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=519x343>,
#  array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...],
#         [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]]))

annotation_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=492x325>,
#  array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...],
#         [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]]))

annotation_data[435]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=290x334>,
#  array([[64.52631579, 95.31578947, 123.26315789, 149.31578947, ...],
#         [15.42105263, 8.31578947, 10.21052632, 28.21052632, ...]]))

annotation_data[870]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=192x128>,
#  array([[2.96536524, 7.55604534, 19.45780856, 33.73992443, ...],
#         [23.63413098, 32.13539043, 33.83564232, 8.84193955, ...]]))

all_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=510x337>,
#  (0, array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...],
#             [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]]))

all_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=519x343>,
#  (0, array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...],
#             [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]]))

all_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=492x325>,
#  (0, array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...],
#             [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]]))

all_data[3]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=538x355>,
#  (0, array([[19.54035088, 18.57894737, 26.27017544, 38.2877193, ...],
#             [131.49122807, 100.24561404, 74.2877193, 49.29122807, ...]]))

all_data[4]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=528x349>,
#  (0, array([[11.87982456, 11.87982456, 13.86578947, 15.35526316, ...],
#             [128.34649123, 105.50789474, 91.60614035, 76.71140351, ...]]))

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    ims = (0, 1, 2, 435, 870, 1070, 1868, 1923, 2723, 2765, 2807, 2854)
    for i, j in enumerate(ims, start=1):
        plt.subplot(2, 5, i)
        if len(data.target_type) == 1:
            if data.target_type[0] == "category":
                im, lab = data[j]
                plt.title(label=lab)
            elif data.target_type[0] == "annotation":
                im, (px, py) = data[j]
                plt.scatter(x=px, y=py)
            plt.imshow(X=im)
        elif len(data.target_type) == 2:
            if data.target_type[0] == "category":
                im, (lab, (px, py)) = data[j]
            elif data.target_type[0] == "annotation":
                im, ((px, py), lab) = data[j]
            plt.title(label=lab)
            plt.imshow(X=im)
            plt.scatter(x=px, y=py)
        if i == 10:
            break
    plt.tight_layout()
    plt.show()

show_images(data=category_data, main_title="category_data")
show_images(data=annotation_data, main_title="annotation_data")
show_images(data=all_data, main_title="all_data")

Caltech in PyTorch

Caltech in PyTorch

Caltech in PyTorch

The above is the detailed content of Caltech in PyTorch. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn