Buy Me a Coffee☕
*My post explains QMNIST.
QMNIST() can use QMNIST dataset as shown below:
*Memos:
- The 1st argument is root(Required-Type:str or pathlib.Path). *An absolute or relative path is possible.
- The 2nd argument is what(Optional-Default:None-Type:str). *"train"(60,000 images), "test"(60,000 images), "test10k"(10,000 images), "test50k"(50,000 images) or "nist"(402,953 images) can be set to it.
- The 3rd argument is compat(Optional-Default:True-Type:bool). *If it's True, the class number of each image is returnd(for compatibility with the MNIST dataloader) while if it's False, the 1D tensor of the full qmnist information is returned.
- The 4th argument is train argument(Optional-Default:True-Type:bool):
*Memos:
- It's ignored if what isn't None.
- If it's True, train data(60,000 images) is used while if it's False, test data(60,000 images) is used.
- There is transform argument(Optional-Default:None-Type:callable). *transform= must be used.
- There is target_transform argument(Optional-Default:None-Type:callable). *target_transform= must be used.
- There is download argument(Optional-Default:False-Type:bool):
*Memos:
- download= must be used.
- If it's True, the dataset is downloaded from the internet and extracted(unzipped) to root.
- If it's True and the dataset is already downloaded, it's extracted.
- If it's True and the dataset is already downloaded and extracted, nothing happens.
- It should be False if the dataset is already downloaded and extracted because it's faster.
- You can manually download and extract the dataset from here to e.g. data/QMNIST/raw/.
from torchvision.datasets import QMNIST train_data = QMNIST( root="data" ) train_data = QMNIST( root="data", what=None, compat=True, train=True, transform=None, target_transform=None, download=False ) train_data = QMNIST( root="data", what="train", train=False ) test_data1 = QMNIST( root="data", train=False ) test_data1 = QMNIST( root="data", what="test", train=True ) test_data2 = QMNIST( root="data", what="test10k" ) test_data3 = QMNIST( root="data", what="test50k", compat=False ) nist_data = QMNIST( root="data", what="nist" ) l = len l(train_data), l(test_data1), l(test_data2), l(test_data3), l(nist_data) # (60000, 60000, 10000, 50000, 402953) train_data # Dataset QMNIST # Number of datapoints: 60000 # Root location: data # Split: train train_data.root # 'data' train_data.what # 'train' train_data.compat # True train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method qmnist.download of dataset qmnist number datapoints: root location: data split: train> train_data[0] # (<pil.image.image image mode="L" size="28x28">, 5) test_data3[0] # (<pil.image.image image mode="L" size="28x28">, # tensor([3, 4, 2424, 51, 33, 261051, 0, 0])) train_data[1] # (<pil.image.image image mode="L" size="28x28">, 0) test_data3[1] # (<pil.image.image image mode="L" size="28x28">, # tensor([8, 1, 522, 60, 38, 55979, 0, 0])) train_data[2] # (<pil.image.image image mode="L" size="28x28">, 4) test_data3[2] # (<pil.image.image image mode="L" size="28x28">, # tensor([9, 4, 2496, 115, 39, 269531, 0, 0])) train_data[3] # (<pil.image.image image mode="L" size="28x28">, 1) test_data3[3] # (<pil.image.image image mode="L" size="28x28">, # tensor([5, 4, 2427, 77, 35, 261428, 0, 0])) train_data[4] # (<pil.image.image image mode="L" size="28x28">, 9) test_data3[4] # (<pil.image.image image mode="L" size="28x28">, # tensor([7, 4, 2524, 69, 37, 272828, 0, 0])) train_data.classes # ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four', # '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine'] </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
from torchvision.datasets import QMNIST train_data = QMNIST( root="data", what="train" ) test_data1 = QMNIST( root="data", what="test" ) test_data2 = QMNIST( root="data", what="test10k" ) test_data3 = QMNIST( root="data", what="test50k" ) nist_data = QMNIST( root="data", what="nist" ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(12, 2)) col = 5 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data1) show_images(data=test_data2) show_images(data=test_data3) show_images(data=nist_data)
The above is the detailed content of QMNIST in PyTorch. For more information, please follow other related articles on the PHP Chinese website!

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

WebStorm Mac version
Useful JavaScript development tools

Atom editor mac version download
The most popular open source editor

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
