


Large Data Workflows Using Pandas
When dealing with datasets too large to fit in memory, out-of-core workflows are essential. In this context, we explore best practices for handling large data using pandas.
To efficiently manage large datasets, consider the following best-practice workflow:
-
Loading Flat Files into an On-Disk Database Structure:
- Utilize HDFStore to store large datasets on disk in a structured format.
- Define group mappings to organize your tables based on field groupings.
- Append data to each table in groups, ensuring data columns are defined for fast row subsetting.
-
Querying the Database to Retrieve Data into Pandas Data Structure:
- Select specific field groupings to efficiently retrieve data.
- Use a function to seamlessly select and concatenate data from multiple tables.
- Create indexes on data columns for improved row-subsetting performance.
-
Updating the Database After Manipulating Pieces in Pandas:
- Create new groups to store new columns created from data manipulations.
- Ensure data_columns are properly defined in new groups.
- Enable compression to minimize storage space.
Example:
import pandas as pd # Group mappings for logical field grouping group_map = { "A": {"fields": ["field_1", "field_2"], "dc": ["field_1"]}, "B": {"fields": ["field_10"], "dc": ["field_10"]}, ... } # Iterate over flat files and append data to tables for file in files: chunk = pd.read_table(file, chunksize=50000) for group, info in group_map.items(): frame = chunk.reindex(columns=info["fields"], copy=False) store.append(group, frame, data_columns=info["dc"]) # Retrieve specific columns selected_columns = ["field_1", "field_10"] group_1 = "A" group_2 = "B" data = store.select_as_multiple([group_1, group_2], columns=selected_columns)
The above is the detailed content of How Can Pandas Handle Large Datasets That Exceed Available Memory?. For more information, please follow other related articles on the PHP Chinese website!

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
