


How to Perform Multiple Aggregations on a Single Column Using Pandas GroupBy.agg()?
Multiple Aggregations on the Same Column Using Pandas GroupBy.agg()
When working with Pandas, it's often necessary to perform multiple aggregations on the same column. While intuitive, the straightforward approach of specifying the same column multiple times in the agg() method is not syntactically correct. This begs the question of how to effectively and concisely apply different aggregating functions to a single column using GroupBy.agg().
Solution
As of 2022-06-20, the recommended practice for multiple aggregations is using a dictionary syntax:
df.groupby('dummy').agg({ 'returns': {'Mean': np.mean, 'Sum': np.sum} })
In this example, the 'returns' column is aggregated with both the mean and sum functions. The resulting DataFrame will contain two new columns, 'Mean' and 'Sum,' that show the respective aggregations.
Historical Note
Prior to the adoption of the dictionary syntax, there were two alternative methods for multiple aggregations:
- Passing Functions as a List:
df.groupby('dummy').agg({'returns': [np.mean, np.sum]})
This approach passes the functions as a list directly to agg(). The DataFrame will contain two new columns with the results of the mean and sum aggregations, respectively.
- Passing Functions as a Nested Dictionary:
df.groupby('dummy').agg({'returns': {'f1': np.mean, 'f2': np.sum}})
Similar to the list approach, functions are passed as a dictionary within a dictionary. The keys of the inner dictionary specify the function names, while the values are the aggregating functions. The DataFrame will have a column for each specified function name.
The above is the detailed content of How to Perform Multiple Aggregations on a Single Column Using Pandas GroupBy.agg()?. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor
