


How to Create a New Race Label Column in Pandas Based on Multiple Ethnicity Columns?
Creating New Column Based on Values from Multiple Columns Using a Function in Pandas
When working with dataframes in Pandas, it may be necessary to create a new column based on values from multiple existing columns. A common scenario arises when a custom function needs to be applied to a set of columns row-wise to determine the new column's values.
Example Scenario
Consider the following dataframe with six ethnicity-related indicator columns:
df = pd.DataFrame({ 'ERI_Hispanic': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_AmerInd_AKNatv': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_Asian': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 'ERI_Black_Afr.Amer': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_HI_PacIsl': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 'ERI_White': [1, 0, 1, 1, 0, 1, 1, 1, 1, 1] })
The goal is to create a new column named 'race_label' that classifies each row based on the following criteria:
- If ERI_Hispanic equals 1, return "Hispanic".
- If the sum of all non-Hispanic ERI columns (ERI_AmerInd_AKNatv, ERI_Asian, ERI_Black_Afr.Amer, ERI_HI_PacIsl, and ERI_White) is greater than 1, return "Two or More".
- For any other non-zero value in the ERI columns, return the corresponding race label (e.g., "A/I AK Native", "Asian", "Black/AA", "Haw/Pac Isl.", or "White").
Solution
The solution involves two steps: creating a custom function to perform the classification and applying the function to the dataframe row-wise.
1. Defining the Custom Function
def label_race(row): if row['ERI_Hispanic'] == 1: return 'Hispanic' elif row['ERI_AmerInd_AKNatv'] + row['ERI_Asian'] + row['ERI_Black_Afr.Amer'] + row['ERI_HI_PacIsl'] + row['ERI_White'] > 1: return 'Two or More' elif row['ERI_AmerInd_AKNatv'] == 1: return 'A/I AK Native' elif row['ERI_Asian'] == 1: return 'Asian' elif row['ERI_Black_Afr.Amer'] == 1: return 'Black/AA' elif row['ERI_HI_PacIsl'] == 1: return 'Haw/Pac Isl.' elif row['ERI_White'] == 1: return 'White' else: return 'Other'
This function takes a row of the dataframe as input and returns the appropriate race label based on the provided criteria.
2. Applying the Function to the Dataframe
To create the new 'race_label' column, use the apply() function along with the axis=1 parameter to apply the label_race function to each row of the dataframe.
df['race_label'] = df.apply(label_race, axis=1)
The resulting dataframe with the new column is displayed below:
ERI_Hispanic ERI_AmerInd_AKNatv ERI_Asian ERI_Black_Afr.Amer ERI_HI_PacIsl ERI_White \ 0 0 0 0 0 0 1 1 1 0 0 0 0 0 2 0 0 0 0 0 1 3 0 0 0 0 0 1 4 0 0 0 0 0 0 5 0 0 0 0 0 1 6 0 0 1 0 0 1 7 0 0 0 0 1 1 8 0 0 0 1 0 0 9 0 0 0 0 0 1 race_label 0 White 1 Hispanic 2 White 3 White 4 Other 5 White 6 Two or More 7 White 8 Haw/Pac Isl. 9 White
The above is the detailed content of How to Create a New Race Label Column in Pandas Based on Multiple Ethnicity Columns?. For more information, please follow other related articles on the PHP Chinese website!

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

Error loading Pickle file in Python 3.6 environment: ModuleNotFoundError:Nomodulenamed...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Zend Studio 13.0.1
Powerful PHP integrated development environment