Home >Backend Development >Python Tutorial >Task-Python Packages
Progress Bar and TQDM:
To implement progress bars for tasks such as loops, file processing, or downloads.
from progress.bar import ChargingBar bar = ChargingBar('Processing', max=20) for i in range(20): # Do some work bar.next() bar.finish()
Output:
Processing ████████████████████████████████ 100%
TQDM: Similar to progress bar but its more simple to setup than progress bar.
from tqdm import tqdm import time for i in tqdm(range(100)): time.sleep(0.1)
Output:
100%|██████████████████████████████████████| 100/100 [00:00<00:00, 18784.11it/s]
Matplotlib:
Matplotlib is used for creating static, animated, and interactive visualizations.
import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] plt.plot(x, y, label='Linear Growth', color='blue', linestyle='--', marker='o') plt.title("Line Plot Example") plt.xlabel("X-axis") plt.ylabel("Y-axis") plt.legend() plt.show()
Output:
Numpy:
NumPy (Numerical Python) is a fundamental Python library for numerical computing. It provides support for working with large, multi-dimensional arrays (like 1-D,2-D,3-D) and matrices, along with a collection of mathematical functions to operate on these arrays efficiently.
Example:
import numpy as np # 1D array arr1 = np.array([1, 2, 3, 4]) # 2D array arr2 = np.array([[1, 2], [3, 4]]) print(arr1, arr2)
Output:
[1 2 3 4] [[1 2] [3 4]]
Pandas:
It is used for data manipulation and analysis with Series(lists) and DataFrame(table or spreadsheet).
Example:
import pandas x=[1,2,3] y=pandas.Series(x,index=["no1","no2","no3"]) print(y)
Output:
no1 1 no2 2 no3 3 dtype: int64
The above is the detailed content of Task-Python Packages. For more information, please follow other related articles on the PHP Chinese website!