


Detecting Hallucinations in LLMs with Discrete Semantic Entropy and Perplexity
When working with large language models (LLMs), spotting hallucinations can be tricky. Instead of relying solely on an LLM as the judge (which can still make mistakes, and many evaluation frameworks use only that for hallucination detection), we can use perplexity, entailment, and discrete semantic entropy to better identify potential hallucinations. Although I’m using an LLM here to detect entailment, that’s not necessary. That said, this method works best for questions with straightforward, factual answers—those that aren’t too vague or subjective. What do you think about using these combined metrics for better hallucination detection? I understand the code can be improved/optimized, but the goal was to quickly test how it works.
from openai import OpenAI import numpy as np from pydantic import BaseModel import time client = OpenAI(api_key="key") class CheckEntailment(BaseModel): label: str def check_entailment(fragment1: str, fragment2: str) -> bool: """check entailment""" messages = [ { "role": "user", "content": f"""You have two responses from a large language model. Check if the meaning of one repsonse is entailed by the other, or if there is a contradiction. Return '0' if entailment. Return '1' if contradiction. Return only the label, without any explanation. \n Response1: \n {fragment1}\n\n Response2: \n {fragment2}""", } ] completion = client.beta.chat.completions.parse( model="gpt-4o-mini", messages=messages, temperature=0.1, logprobs=True, top_logprobs=2, response_format=CheckEntailment, ) entailment = False # print(completion.choices[0].logprobs.content[3].top_logprobs) for top_logprob in completion.choices[0].logprobs.content[3].top_logprobs: print(top_logprob.token, np.round(np.exp(top_logprob.logprob), 2)) if "0" in top_logprob.token and np.exp(top_logprob.logprob) > 0.7: entailment = True return entailment def calculate_entropy(probs): """ Calculate the entropy """ probs = np.array(probs) probs = probs / probs.sum() probs = probs[probs > 0] entropy = -np.sum(probs * np.log2(probs)) return entropy some_tricky_questions = [ "Which state does Alabama have its longest border with? Is it Florida or Tennessee?", "Who hosted the British Gameshow Countdown in 2007: a) Nick Hewer b) Richard Whiteley c) Jeff Stelling?", "Trivia question: Which Black Eyed Peas band member was the only one to host Saturday Night Live?", "What year in the 1980s were the FIS Alpine World Ski Championships hosted in Argentina?", "How many Brazilian numbers are there between 1-6?", "Which Israeli mathematician founded an online sequences repository in the 1970s?", "Write the 7 english words that have three consecutive double letters. No need to provide explanations, just say the words.", # adding two questions where it should not hallucinate "What is the capital of India?", "what is the full form of CPU?", ] for question in some_tricky_questions: print("question", question) messages = [{"role": "user", "content": f"{question}"}] gpt_response = client.chat.completions.create( model="gpt-4o-mini", messages=messages, temperature=0.1, logprobs=True, max_completion_tokens=60, ) time.sleep(2) # get perplexity score using a low temperature response logprobs = [token.logprob for token in gpt_response.choices[0].logprobs.content] perplexity_score = np.round(np.exp(-np.mean(logprobs)), 2) # initialize clusters with the first response clusters = [[gpt_response.choices[0].message.content]] # generate some more responses using higher temperature and check entailment gpt_response = client.chat.completions.create( model="gpt-4o-mini", messages=messages, n=7, temperature=0.9, logprobs=True, max_completion_tokens=60, ) time.sleep(2) # check entailment and form clusters responses = [choice.message.content for choice in gpt_response.choices] for response in responses[1:]: found_cluster = False for cluster in clusters: if check_entailment(cluster[0], response): cluster.append(response) found_cluster = True break if not found_cluster: clusters.append([response]) cluster_probs = [len(cluster) / (len(responses) + 1) for cluster in clusters] discrete_entropy = calculate_entropy(cluster_probs) print("clusters", clusters) print("no of clusters", len(clusters)) print("perplexity", perplexity_score) print("entropy", discrete_entropy)
The above is the detailed content of Detecting Hallucinations in LLMs with Discrete Semantic Entropy and Perplexity. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

WebStorm Mac version
Useful JavaScript development tools

Atom editor mac version download
The most popular open source editor

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
