This article explains how to use Python’s data types effectively to create scalable and maintainable applications.
Python offers a rich variety of data types that are fundamental to writing effective and efficient code. Understanding these data types is crucial for any developer, as it allows for proper data storage, manipulation, and retrieval. In this guide, we’ll explore common Python data types, their applications, and strategies for determining which data types to use in different scenarios.
A quick explanation of Python data types.
First, Python offers a vast array of data types. The Python documentation provides detailed descriptions of each data type, and you can find the list at the following link: Data Types. “Python also provides some built-in data types, in particular, dict, list, set, and frozenset, tuple. The str class is used to hold Unicode strings, and the bytes and bytearray classes are used to hold binary data” (Python Software Foundation (a), n.d., Data Type). Built-in data types in Python are fundamental data structures that come standard with Python; you don’t need to import any external library to use them.
The table below shows Python’s common data types.
Table-1
Common Data Types
Note: from Programming in Python 3, by Bailey, 2016.
Strategy for Determining Data Types
To determine the data types needed for an application, it is crucial to analyze the data that needs to be collected and understand the application’s functionality requirements. In general, this equates to these four key steps:
- Identifying the Data: identifying what types of data the application will collect and handle, such as textual information and numerical data.
- Understanding Data Operations: which operations will be performed on the data, such as sorting, searching, or complex manipulations, to ensure the chosen data types can support these functionalities.
- Structuring Data Relations: how different pieces of data relate to each other and deciding on the appropriate structures (e.g., nested dictionaries or lists) to represent these relationships efficiently.
- Planning for Scalability and Maintenance: future expansions or modifications to the application and selecting data types and structures that allow for modification, updates, and scalability.
For this specific application, this translates to the following steps:
Note that the information provided does not explicitly state whether the data needs to be manipulated (sorted or modified). However, for the application to be useful and functional, the data needs to be manipulated to some extent.
Based on the information provided, the application functionality requirements are as follows:
- Storing Personal Information: storing basic personal information for each family member, such as names and birth dates.
- Address Management: manage and store current and possibly multiple addresses for each family member.
- Relationship Tracking: tracking and representing the relationships between different family members (e.g., parent-child, spouses, siblings).
- Data Manipulation: functionalities for editing, sorting, and updating the stored information, including personal details, addresses, and family relationships.
Based on the information provided, the data that needs to be collected is as follows:
- Names: this includes names and family members’ names are text data
- Birth dates: birth dates can be text data, numbers data, or a mix of both.
- Address: addresses can be complex, potentially requiring storage of multiple addresses per family member with components like street, city, state, and zip code. It is a mix of numbers and text data.
- Relationship: relationships between family members (e.g., parent-child, spouses, siblings) is text data.
Four data elements and the corresponding data types
Taking into account the application functionality requirements and data information the following are the four data elements and the corresponding data types.
- Names: the string data type str. This allows us to easily store and manipulate individual names. I will use a tuple to separate the first name and last name, name = (‘first_name’, ‘last_name’). Tuples are great in this case because they are immutable, meaning once a tuple is created, it cannot be altered ensuring that the integrity of first and last names is preserved. Additionally, they are indexed meaning that they can be searched by index. For example, a list name tuple can be searched by last or first name. Furthermore, a tuple takes less space in memory than a dictionary or a list.
- Birth Dates: they could technically be stored as strings, integers, lists, or dictionaries, however utilizing the datetime.date object from Python’s datetime module has significant advantages such as easy date manipulations and functionality. For example, calculating ages, or sorting members by their birth dates. In most cases storing birth dates, requires converting input strings into datetime.date objects. Note that datetime is a class. Additionally, in Python data types (floats, str, int, list, tuple, set, …) are instances of the Python object. In other words, they are objects.
- A datetime.date object utilizes the following data type:
Year: An integer representing the year, e.g., 2024.
Month: An integer representing the month, from 1 (January) to 12 (December).
Day: An integer representing the day of the month, from 1 to 31, depending on the month and year.
For example: Note: the method date.fromisoformat() converts strings into datetime.date() object with integer arguments.
from datetime import date >>> date.fromisoformat('2019-12-04') datetime.date(2019, 12, 4) >>> date.fromisoformat('20191204') datetime.date(2019, 12, 4) >>> date.fromisoformat('2021-W01-1') datetime.date(2021, 1, 4)
(Python Software Foundation (b), n.d., datetime — Basic date and time types)
Address: addresses have multiple components such as street, city, state, and zip code. I would use a dictionary data type dict. The dictionary key-value pair items structure is great for storing, modifying, and accessing the various parts of an address.
Relationship: relationships between family members, such as parent-child, spouses, and siblings. I would use a dictionary data type dict with embedded List and tuple data types. In this structure, the keys represent the types of relationships, and the values are lists of names or identifiers referencing other family members. This would allow for easy storing, modifying, and accessing relationships data.
user_123 = { "name": ("John", "Doe"), # Using tuple for the name "birth_date": date(1974, 6, 5), # Using datetime for birth dates "address": { # Using a dictionary for the address "street": "123 My Street", "city": "Mytown", "state": "Mystate", "zip_code": "12345" }, "relationships": { # Using a dictionary with embedded lists and tuples "spouse": ("Jane", "Doe"), "children": [("George", "Doe"), ("Laura", "Doe")], "parents": [("Paul", "Doe"), ("Lucy", "Doe")], } }
To create well-structured and maintainable applications in Python, it is essential to choose the right data types. To ensure your code is both efficient and scalable, it’s crucial to understand the differences between Python’s built-in data types — such as strings, tuples, dictionaries, and datetime objects — and to implement them effectively.
References:
Bailey, M. (2016, August). Chapter 3: Types, Programming in Python 3. Zyante Inc.
Python Software Foundation (a). (n.d.). Data Type. Python.
python.org. https://docs.python.org/3/library/datatypes.htmlLinks to an external site.
Python Software Foundation (b). (n.d.). datetime — Basic date and time types Python. python.org. https://docs.python.org/3/library/datetime.html
Originally published at Python Data Types: A Quick Guide - Medium Aug. 15 2024
The above is the detailed content of Python Data Types: A Quick Guide. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
