


Loading and Parsing a JSON File Containing Multiple JSON Objects
Unlike standard JSON files, which encapsulate all data within a single object or array, certain JSON formats store individual objects as separate lines in a text file. This can lead to challenges when attempting to parse such a file in Python.
Addressing the ValueError
When using Python's json.load() function to load a JSON file with multiple objects, you may encounter a "ValueError: Extra data" exception. This error indicates that the file contains unexpected data after the first parsed object.
Solution: Line-by-Line Parsing
To handle this issue, you need to treat each line in the file as an independent JSON object. Replace your current code with the following:
import json data = [] with open('file') as f: for line in f: data.append(json.loads(line))
This code iterates over each line in the file, parses it as a JSON object, and appends it to a list.
Consideration for Large Files
If the JSON file is particularly large, appending all objects to a single list can consume excessive memory. To mitigate this, process each object separately before moving on to the next line. Avoid:
data = [] # List of all objects
Instead, process each object as needed:
for line in f: process_object(json.loads(line))
Handling Delimited JSON Objects
If your JSON file contains individual objects separated by delimiters, such as commas or newlines, you can use the following technique to parse out each object:
import json, io # Read delimited JSON objects from a file with open('file') as f: json_string = f.read() # Create a buffered reader json_buffer = io.StringIO(json_string) while True: # Read next JSON object from the buffer json_object = json.load(json_buffer) # Process JSON object if not json_object: # Reached the end of the file break
The above is the detailed content of How to Parse a JSON File Containing Multiple JSON Objects in Python?. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools