Buy Me a Coffee☕
*Memos:
- My post explains MNIST, EMNIST, QMNIST, ETLCDB, Kuzushiji and Moving MNIST.
- My post explains Fashion-MNIST, Caltech 101, Caltech 256, CelebA, CIFAR-10 and CIFAR-100.
(1) Oxford-IIIT Pet(2012):
- has the 7,349 cat and dog images each connected to the label from 37 classes:
*Memos:
- Each class has roughly 200 images.
- 3,680 for train or train and validation and 3,669 for test.
- is OxfordIIITPet() in PyTorch.
(2) Oxford 102 Flower(2008):
- has 8,189 flower images(1,020 for train, 1,020 for validation and 6,149 for test) with the 102 categories(classes). *Each class has 40 to 258 images.
- is Flowers102() in PyTorch.
(3) Stanford Cars(2013):
- has 16185 car images(8,144 for train and 8,041 for test) with 196 classes.
- is StanfordCars() in PyTorch.
(4) Places365(2017):
- has scene images with the 365 scene categories(classes) out of the 434 scene categories(classes) in the Places Database and there are Places365-Standard, Places365-Challenge and Places-Extra69 as you can see here:
*Memos:
- Places365-Standard has 2,168,460 images(1,803,460 for train, 36,500 for validation and 328,500 for test) with the 365 categories(classes) out of the 434 categories(classes) in the Places Database. *There are 50 images per category(class) in the validation set and 900 images per category(class) in the test set.
- Places365-Challenge has 8,391,628 images(8,026,628 for train, 36,500 for validation and 328,500 for test), adding 6,223,168 extra images to the train set of Places365-Standard.
- Places-Extra69 has 105,321 images(98,721 for train and 6,600 for test) with the extra 69 categories(classes) out of the 434 categories(classes) in the Places Database. *Currently, it cannot be downloaded.
- is Places365() in PyTorch.
(5) Flickr8k(2013):
- has the 8,091 images obtained from flickr with the five different captions for each image.
- is Flickr8k() in PyTorch but it doesn't explain how to set up the dataset to it so I don't know how to load the dataset with it.
(6) Flickr30k(2015):
- has 31,784 images obtained from flickr with the five different captions for each image.
- is Flickr8k() in PyTorch but it doesn't explain how to set up the dataset to it so I don't know how to load the dataset with it.
The above is the detailed content of Datasets for Computer Vision (3). For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
