


How to Efficiently Initialize and Reuse a Global Object Across All FastAPI Endpoints?
How to Initialize and Reuse a Global Object or Variable in Every FastAPI Endpoint
When creating a notification client that requires an initial connection, it is important to find an efficient way to utilize it across all endpoints to avoid performance delays. We present two potential approaches to address this scenario.
Option 1: Utilizing App.state
Using the app.state attribute, one can store custom class objects outside the main file. This allows for accessing the notification client through the Request object, even when working with a submodule that uses APIRouter. It is possible to initialize the object using either a now-deprecated startup event or a lifespan function.
Example:
from fastapi import FastAPI, Request from contextlib import asynccontextmanager @asynccontextmanager async def lifespan(app: FastAPI): app.state.n_client = NotificationClient() yield app.state.n_client.close() app = FastAPI(lifespan=lifespan) @app.get('/') async def main(request: Request): n_client = request.app.state.n_client # ...
Option 2: Employing Starlette's Lifespan Handler
With the introduction of Starlette's lifespan handler, object initialization and usage can be managed within the request.state. This handler also provides startup and shutdown functionality. By adding the initialized object to the state dictionary, it becomes accessible within endpoints using request.state.
Example:
from fastapi import FastAPI, Request from contextlib import asynccontextmanager @asynccontextmanager async def lifespan(app: FastAPI): n_client = NotificationClient() yield {'n_client': n_client} n_client.close() app = FastAPI(lifespan=lifespan) @app.get('/') async def main(request: Request): n_client = request.state.n_client # ...
Both approaches offer effective solutions to reuse a global object or variable in FastAPI endpoints. The option that best suits a particular application will depend on the specific requirements and architecture.
The above is the detailed content of How to Efficiently Initialize and Reuse a Global Object Across All FastAPI Endpoints?. For more information, please follow other related articles on the PHP Chinese website!

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

NumPyallowsforvariousoperationsonarrays:1)Basicarithmeticlikeaddition,subtraction,multiplication,anddivision;2)Advancedoperationssuchasmatrixmultiplication;3)Element-wiseoperationswithoutexplicitloops;4)Arrayindexingandslicingfordatamanipulation;5)Ag

ArraysinPython,particularlythroughNumPyandPandas,areessentialfordataanalysis,offeringspeedandefficiency.1)NumPyarraysenableefficienthandlingoflargedatasetsandcomplexoperationslikemovingaverages.2)PandasextendsNumPy'scapabilitieswithDataFramesforstruc


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
