Home >Backend Development >Python Tutorial >How to Efficiently Get the Top N Records within Each Pandas Group?
Getting Topmost Records within a Pandas Group
In the following dataset:
df = pd.DataFrame({'id':[1,1,1,2,2,2,2,3,4], 'value':[1,2,3,1,2,3,4,1,1]})
we wish to obtain the top two records for each id. A straightforward approach involves assigning row numbers within each group using the groupby method:
dfN = df.groupby('id').apply(lambda x:x['value'].reset_index()).reset_index()
However, a more efficient solution is provided by the head function:
df.groupby('id').head(2)
This operation produces:
id value id 1 0 1 1 1 1 2 2 3 2 1 4 2 2 3 7 3 1 4 8 4 1
To remove the MultiIndex and flatten the results, use:
df.groupby('id').head(2).reset_index(drop=True)
This yields the desired output:
id value 0 1 1 1 1 2 2 2 1 3 2 2 4 3 1 5 4 1
Thus, the head function provides a concise and optimized approach for retrieving the topmost records within each Pandas group.
The above is the detailed content of How to Efficiently Get the Top N Records within Each Pandas Group?. For more information, please follow other related articles on the PHP Chinese website!