search
HomeBackend DevelopmentPython TutorialHow to Efficiently Log Raw HTTP Request and Response Bodies in FastAPI?

How to Efficiently Log Raw HTTP Request and Response Bodies in FastAPI?

How to Record Raw HTTP Requests and Responses in Python FastAPI

Introduction:

In order to meet auditing requirements for your Python FastAPI-based web service, you need to preserve the raw JSON bodies of both requests and responses on certain routes. This guide will present two viable solutions to accomplish this without noticeably impacting response times, even when working with body sizes approximating 1MB.

Option 1: Middleware Utilization

Middleware Mechanics:

Middleware functions as a gatekeeper for requests entering the application. It allows for handling requests before endpoint processing and responses before returning to clients. You can establish middleware using the @app.middleware decorator on a function:

Request and Response Body Management:

To access the request body from the stream within middleware (using request.body() or request.stream()), you'll need to make it available later in the request-response cycle. The linked post discusses this workaround, which now is unnecessary for FastAPI versions 0.108.0 and above.

For the response body, you can replicate the technique outlined in this post to consume and return the body directly, providing status code, headers, and media type along with the original response.

Logging Data:

Employ BackgroundTask to log data, ensuring its execution after response completion. This eliminates client waiting for logging tasks and maintains response time integrity.

Option 2: Custom APIRoute Implementation

Custom APIRoute:

This option involves creating a custom APIRoute class for manipulating request and response bodies before processing endpoints or returning results to clients. It enables the isolation of custom route handling to specific endpoints by using a dedicated APIRouter:

Considerations:

Memory Constraints:

Both approaches may encounter challenges with large request or response bodies exceeding available server RAM. Streaming large responses can introduce client-side delays or reverse proxy errors. Restrict middleware usage to specific routes or exclude endpoints with large streaming responses to avoid potential issues.

Example Code (Option 1):

from fastapi import FastAPI, APIRouter, Response, Request
from starlette.background import BackgroundTask
from fastapi.routing import APIRoute
from starlette.types import Message
from typing import Dict, Any
import logging


app = FastAPI()
logging.basicConfig(filename='info.log', level=logging.DEBUG)


def log_info(req_body, res_body):
    logging.info(req_body)
    logging.info(res_body)



# Not required for FastAPI >= 0.108.0
async def set_body(request: Request, body: bytes):
    async def receive() -> Message:
        return {'type': 'http.request', 'body': body}
    request._receive = receive


@app.middleware('http')
async def some_middleware(request: Request, call_next):
    req_body = await request.body()
    await set_body(request, req_body)  # Not required for FastAPI >= 0.108.0
    response = await call_next(request)
    
    res_body = b''
    async for chunk in response.body_iterator:
        res_body += chunk
    
    task = BackgroundTask(log_info, req_body, res_body)
    return Response(content=res_body, status_code=response.status_code, 
        headers=dict(response.headers), media_type=response.media_type, background=task)


@app.post('/')
def main(payload: Dict[Any, Any]):
    return payload

Example Code (Option 2):

from fastapi import FastAPI, APIRouter, Response, Request
from starlette.background import BackgroundTask
from starlette.responses import StreamingResponse
from fastapi.routing import APIRoute
from starlette.types import Message
from typing import Callable, Dict, Any
import logging
import httpx


def log_info(req_body, res_body):
    logging.info(req_body)
    logging.info(res_body)

       
class LoggingRoute(APIRoute):
    def get_route_handler(self) -> Callable:
        original_route_handler = super().get_route_handler()

        async def custom_route_handler(request: Request) -> Response:
            req_body = await request.body()
            response = await original_route_handler(request)
            tasks = response.background
            
            if isinstance(response, StreamingResponse):
                res_body = b''
                async for item in response.body_iterator:
                    res_body += item
                  
                task = BackgroundTask(log_info, req_body, res_body)
                response = Response(content=res_body, status_code=response.status_code, 
                        headers=dict(response.headers), media_type=response.media_type)
            else:
                task = BackgroundTask(log_info, req_body, response.body)
            
            # Check if the original response had background tasks already attached to it
            if tasks:
                tasks.add_task(task)  # Add the new task to the tasks list
                response.background = tasks
            else:
                response.background = task
                
            return response
            
        return custom_route_handler


app = FastAPI()
router = APIRouter(route_class=LoggingRoute)
logging.basicConfig(filename='info.log', level=logging.DEBUG)


@router.post('/')
def main(payload: Dict[Any, Any]):
    return payload


@router.get('/video')
def get_video():
    url = 'https://storage.googleapis.com/gtv-videos-bucket/sample/ForBiggerBlazes.mp4'
    
    def gen():
        with httpx.stream('GET', url) as r:
            for chunk in r.iter_raw():
                yield chunk

    return StreamingResponse(gen(), media_type='video/mp4')


app.include_router(router)

These solutions provide efficient methods for logging raw HTTP request and response bodies in FastAPI without significantly affecting response times.

The above is the detailed content of How to Efficiently Log Raw HTTP Request and Response Bodies in FastAPI?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Is Tuple Comprehension possible in Python? If yes, how and if not why?Is Tuple Comprehension possible in Python? If yes, how and if not why?Apr 28, 2025 pm 04:34 PM

Article discusses impossibility of tuple comprehension in Python due to syntax ambiguity. Alternatives like using tuple() with generator expressions are suggested for creating tuples efficiently.(159 characters)

What are Modules and Packages in Python?What are Modules and Packages in Python?Apr 28, 2025 pm 04:33 PM

The article explains modules and packages in Python, their differences, and usage. Modules are single files, while packages are directories with an __init__.py file, organizing related modules hierarchically.

What is docstring in Python?What is docstring in Python?Apr 28, 2025 pm 04:30 PM

Article discusses docstrings in Python, their usage, and benefits. Main issue: importance of docstrings for code documentation and accessibility.

What is a lambda function?What is a lambda function?Apr 28, 2025 pm 04:28 PM

Article discusses lambda functions, their differences from regular functions, and their utility in programming scenarios. Not all languages support them.

What is a break, continue and pass in Python?What is a break, continue and pass in Python?Apr 28, 2025 pm 04:26 PM

Article discusses break, continue, and pass in Python, explaining their roles in controlling loop execution and program flow.

What is a pass in Python?What is a pass in Python?Apr 28, 2025 pm 04:25 PM

The article discusses the 'pass' statement in Python, a null operation used as a placeholder in code structures like functions and classes, allowing for future implementation without syntax errors.

Can we Pass a function as an argument in Python?Can we Pass a function as an argument in Python?Apr 28, 2025 pm 04:23 PM

Article discusses passing functions as arguments in Python, highlighting benefits like modularity and use cases such as sorting and decorators.

What is the difference between / and // in Python?What is the difference between / and // in Python?Apr 28, 2025 pm 04:21 PM

Article discusses / and // operators in Python: / for true division, // for floor division. Main issue is understanding their differences and use cases.Character count: 158

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!