search
HomeBackend DevelopmentPython TutorialTowards Effortless Python Configuration Files Version 2

Introduction

In the previous article, we managed to create a simulated property dataclass to manage configuration values for an application. However, it was basically just a template that we had to re-implement for each usage. In version 2, of my work I succeeded in implementing a reusable class.

  • It requires a pair of decorators on the property definitions.
  • Plus, the implementation requires a Sections data type that contains a Section entry for each configuration section.
  • Each section requires a list of ConfigurationNameValue entries

Class Representation

The following class diagram shows the basic reusable class and the data structures needed for a developer to use this functionality.

Towards Effortless Python Configuration Files Version 2

Subclass Configuration Properties

The developer starts the process by subclassing Configuration Properties as follows.

BASE_FILE_NAME: str = 'config.ini'
MODULE_NAME:    str = 'version2properties'

class ConfigurationPropertiesVersion2(ConfigurationProperties, metaclass=SingletonV3):

    def __init__(self):
        self.logger: Logger = getLogger(LOGGER_NAME)

        super().__init__(baseFileName=BASE_FILE_NAME, moduleName=MODULE_NAME, sections=CONFIGURATION_SECTIONS)

        self._configParser.optionxform = self._toStr    # type: ignore

        self._loadConfiguration()

The call to super creates a fully qualified path to the configuration file. The code follows a subset of XDG Base Directory Specification. The code first tries XDG_CONFIG_HOME, then HOME, and finally uses the current directory if both fail. In line 13, the developer calls the protected method to get the configuration parser ready. Additionally, that call will

  • Ensures the configuration file exists, if not it creates an empty one
  • Creates missing sections
  • Creates missing keys in the sections

The previous capabilities then result in lots of reusable code and bootstraps configuration files. Additionally, we make the class a Singleton to mitigate creation costs as we instantiate it across our application code base.

Define Sections

Notice the parameter sections in the super call. This definition of sections looks like this:

from codeallybasic.ConfigurationProperties import Sections

CONFIGURATION_SECTIONS: Sections = Sections(
    {
        SectionName('General'):  SECTION_GENERAL,
        SectionName('Database'): SECTION_DATABASE,
    }
)

The above is a dictionary where the key is a section name and the value is a section.

Define Section

A Section is just a list of ConfigurationNameValue entries. A ConfigurationNameValue is a data class with 2 values, a PropertyName and its default value. Here are our sections.

from codeallybasic.ConfigurationProperties import Section
from codeallybasic.ConfigurationProperties import ConfigurationNameValue
from codeallybasic.ConfigurationProperties import PropertyName

SECTION_GENERAL: Section = Section(
    [
        ConfigurationNameValue(name=PropertyName('debug'),                           defaultValue='False'),
        ConfigurationNameValue(name=PropertyName('logLevel'),                     defaultValue='Info'),
        ConfigurationNameValue(name=PropertyName('phoneyEnumByValue'),  defaultValue=DEFAULT_PHONEY_ENUM_BY_VALUE.value),
        ConfigurationNameValue(name=PropertyName('impostorEnumByName'), defaultValue=DEFAULT_IMPOSTOR_ENUM_BY_NAME.name),
    ]
)

SECTION_DATABASE: Section = Section(
    [
        ConfigurationNameValue(name=PropertyName('dbName'), defaultValue='example_db'),
        ConfigurationNameValue(name=PropertyName('dbHost'), defaultValue='localhost'),
        ConfigurationNameValue(name=PropertyName('dbPort'), defaultValue='5432'),
    ]
)

Notice that I have specified two new enumeration properties. One where we wish to persists is value and the other its name.

Here are there enumeration definitions.

class PhoneyEnumByValue(Enum):
    TheWanderer = 'The Wanderer'
    Mentiroso   = 'Mentiroso'
    FakeBrenda  = 'Faker Extraordinaire'
    NotSet          = 'Not Set'

    @classmethod
    def deSerialize(cls, value: str) -> 'PhoneyEnumByValue':

    @classmethod
    def deSerialize(cls, value: str) -> 'PhoneyEnumByValue':

        match value:
            case PhoneyEnumByValue.TheWanderer.value:
                phoneyEnum: PhoneyEnumByValue = PhoneyEnumByValue.TheWanderer
            case PhoneyEnumByValue.Mentiroso.value:
                phoneyEnum = PhoneyEnumByValue.Mentiroso
            case PhoneyEnumByValue.FakeBrenda.value:
                phoneyEnum = PhoneyEnumByValue.FakeBrenda
            case _:
                raise Exception('Unknown PhoneyEnumByValue')

        return phoneyEnum


class ImpostorEnumByName(Enum):
    Low       = 0.1
    Medium = 0.5
    High     = 1.0
    NotSet = -1.0

We'll see how these affect the property definitions in a developer class

Property Definitions

String properties are defined as follows.

BASE_FILE_NAME: str = 'config.ini'
MODULE_NAME:    str = 'version2properties'

class ConfigurationPropertiesVersion2(ConfigurationProperties, metaclass=SingletonV3):

    def __init__(self):
        self.logger: Logger = getLogger(LOGGER_NAME)

        super().__init__(baseFileName=BASE_FILE_NAME, moduleName=MODULE_NAME, sections=CONFIGURATION_SECTIONS)

        self._configParser.optionxform = self._toStr    # type: ignore

        self._loadConfiguration()

What we have gotten rid of is the boiler plate to access the configParser to get and set the values. What we added was the configurationGetter and configurationSetter decorators. I am not going to cover the implementation details of the decorators and leave this as an exercise for the reader. These decorators take care of interacting with the configuration parser to get and set values. On setting values the configurationSetter decorator does the write-through.

Developers define integer properties as follows.

from codeallybasic.ConfigurationProperties import Sections

CONFIGURATION_SECTIONS: Sections = Sections(
    {
        SectionName('General'):  SECTION_GENERAL,
        SectionName('Database'): SECTION_DATABASE,
    }
)

Notice that the configurationGetter decorator has an optional parameter. It is a function that takes the string property value and converts it to an appropriate typed value before returning to the caller properties. This can be applied to float properties.

Enumeration properties where we want to persist the enumeration name are defined as follows:

from codeallybasic.ConfigurationProperties import Section
from codeallybasic.ConfigurationProperties import ConfigurationNameValue
from codeallybasic.ConfigurationProperties import PropertyName

SECTION_GENERAL: Section = Section(
    [
        ConfigurationNameValue(name=PropertyName('debug'),                           defaultValue='False'),
        ConfigurationNameValue(name=PropertyName('logLevel'),                     defaultValue='Info'),
        ConfigurationNameValue(name=PropertyName('phoneyEnumByValue'),  defaultValue=DEFAULT_PHONEY_ENUM_BY_VALUE.value),
        ConfigurationNameValue(name=PropertyName('impostorEnumByName'), defaultValue=DEFAULT_IMPOSTOR_ENUM_BY_NAME.name),
    ]
)

SECTION_DATABASE: Section = Section(
    [
        ConfigurationNameValue(name=PropertyName('dbName'), defaultValue='example_db'),
        ConfigurationNameValue(name=PropertyName('dbHost'), defaultValue='localhost'),
        ConfigurationNameValue(name=PropertyName('dbPort'), defaultValue='5432'),
    ]
)

Besides using the appropriate decorators note that to persist the enumeration name use the enumUseName parameter and set it to True.

The following is an enumeration property where the developer want to persist its value. Notice that the setter decorator indicates that it is an enumeration. Additionally, notice that the developer must provide a deserialize method that can convert the value to the specific enumeration value.

class PhoneyEnumByValue(Enum):
    TheWanderer = 'The Wanderer'
    Mentiroso   = 'Mentiroso'
    FakeBrenda  = 'Faker Extraordinaire'
    NotSet          = 'Not Set'

    @classmethod
    def deSerialize(cls, value: str) -> 'PhoneyEnumByValue':

    @classmethod
    def deSerialize(cls, value: str) -> 'PhoneyEnumByValue':

        match value:
            case PhoneyEnumByValue.TheWanderer.value:
                phoneyEnum: PhoneyEnumByValue = PhoneyEnumByValue.TheWanderer
            case PhoneyEnumByValue.Mentiroso.value:
                phoneyEnum = PhoneyEnumByValue.Mentiroso
            case PhoneyEnumByValue.FakeBrenda.value:
                phoneyEnum = PhoneyEnumByValue.FakeBrenda
            case _:
                raise Exception('Unknown PhoneyEnumByValue')

        return phoneyEnum


class ImpostorEnumByName(Enum):
    Low       = 0.1
    Medium = 0.5
    High     = 1.0
    NotSet = -1.0

Accessing and Modifying Properties

Accessing and modifying properties is exactly the same as in version 1.

    @property
    @configurationGetter(sectionName='General')
    def debug(self) -> str:
        return ''       # never executed

    @debug.setter
    @configurationSetter(sectionName='General')
    def debug(self, newValue: str):
        pass

The above snippet produces the following output.

    @property
    @configurationGetter(sectionName='Database', deserializeFunction=int)
    def dbPort(self) -> int:
        return -1

    @dbPort.setter
    @configurationSetter(sectionName='Database',)
    def dbPort(self, newValue: int):
        pass

Conclusion

The source code for this article is here. See the support class SingletonV3. See the implementation of ConfigurationProperties

The result of the implementation left me satisfied as a consumer of the code. I was able to get and set typed properties. It did not remove as much code as I had initially hoped for. However, it did provide me with reusable code. However, it did prompt me to write a Live Template in PyCharm to get me over generating individual properties.

Advantages

  • Easy type safe access to application properties
  • Reusable parent class for different implementations
  • Data structure driven code to add new sections and configuration keys

Disadvantages

  • Still lots of boiler plate code
  • I have feeling that using decorators was a misuse of them

My next post I implemented what I call dynamic properties. It entirely removed all the boiler plate code and still maintained the aforementioned advantages.

The above is the detailed content of Towards Effortless Python Configuration Files Version 2. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How do you append elements to a Python list?How do you append elements to a Python list?May 04, 2025 am 12:17 AM

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

How do you create a Python list? Give an example.How do you create a Python list? Give an example.May 04, 2025 am 12:16 AM

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

Discuss real-world use cases where efficient storage and processing of numerical data are critical.Discuss real-world use cases where efficient storage and processing of numerical data are critical.May 04, 2025 am 12:11 AM

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

How do you create a Python array? Give an example.How do you create a Python array? Give an example.May 04, 2025 am 12:10 AM

Pythonarraysarecreatedusingthearraymodule,notbuilt-inlikelists.1)Importthearraymodule.2)Specifythetypecode,e.g.,'i'forintegers.3)Initializewithvalues.Arraysofferbettermemoryefficiencyforhomogeneousdatabutlessflexibilitythanlists.

What are some alternatives to using a shebang line to specify the Python interpreter?What are some alternatives to using a shebang line to specify the Python interpreter?May 04, 2025 am 12:07 AM

In addition to the shebang line, there are many ways to specify a Python interpreter: 1. Use python commands directly from the command line; 2. Use batch files or shell scripts; 3. Use build tools such as Make or CMake; 4. Use task runners such as Invoke. Each method has its advantages and disadvantages, and it is important to choose the method that suits the needs of the project.

How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Explain how memory is allocated for lists versus arrays in Python.Explain how memory is allocated for lists versus arrays in Python.May 03, 2025 am 12:10 AM

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

How do you specify the data type of elements in a Python array?How do you specify the data type of elements in a Python array?May 03, 2025 am 12:06 AM

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.