


GroupBy pandas DataFrame and Select Most Common Value
Problem
Suppose you have a data frame with multiple string columns. Each combination of the first two columns should have only one valid value in the third column. You need to clean the data consistently by grouping the data frame by the first two columns and selecting the most common value of the third column for each combination.
The following code demonstrates an attempt to achieve this:
import pandas as pd<br>from scipy import stats<p>source = pd.DataFrame({</p><pre class="brush:php;toolbar:false">'Country': ['USA', 'USA', 'Russia', 'USA'], 'City': ['New-York', 'New-York', 'Sankt-Petersburg', 'New-York'], 'Short name': ['NY', 'New', 'Spb', 'NY']})
source.groupby(['Country','City']).agg(lambda x: stats.mode(x['Short name'])[0])
However, the last line of code fails with a KeyError. How can you fix this issue?
Solution
Pandas >= 0.16
For Pandas versions 0.16 and later, use the following code:
source.groupby(['Country','City'])['Short name'].agg(pd.Series.mode)<br>
This code uses the pd.Series.mode function, which was introduced in Pandas 0.16, to find the most common value in each group.
Alternatives for dealing with Multiple Modes
The Series.mode function handles cases with multiple modes effectively:
- If there are multiple modes, it returns a Series containing all the modes.
- If you need a separate row for each mode, use GroupBy.apply(pd.Series.mode).
- If you need any one of the modes, use GroupBy.agg(lambda x: pd.Series.mode(x)[0]).
Alternatives to Consider
While you could use statistics.mode from Python, it doesn't handle multiple modes well and may raise a StatisticsError. Hence, it's not recommended.
The above is the detailed content of How to Efficiently Find the Most Common Value in a Pandas DataFrame Group?. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1
Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
