


Running Mean in Python with NumPy
Calculating the running mean, also known as the moving average, of a 1D array is a common task in data analysis. NumPy provides a powerful tool called np.convolve for performing convolution operations, including the running mean.
Definition and Implementation:
The running mean involves sliding a window along the input array and computing the mean of the values within the window at each step. In NumPy, this is achieved as follows:
import numpy as np array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] window_size = 3 result = np.convolve(array, np.ones(window_size) / window_size, mode='valid')
Explanation:
- np.ones(window_size) creates an array of ones with size equal to the window size.
- np.ones(window_size) / window_size normalizes the array by dividing each element by the window size, resulting in a kernel for computing the arithmetic mean.
- np.convolve takes the kernel and convolves it with the input array, performing a sliding mean calculation.
- mode='valid' specifies that only the portion of the array that can be completely covered by the window should be returned, resulting in a result of size len(array) - window_size 1.
Edge Handling:
The mode argument in np.convolve controls how the edges of the array are handled during convolution. The available modes are 'full', 'same', and 'valid':
- 'full' includes both the original length and appended zeros.
- 'same' appends zeros until the output shape is the same as the input shape.
- 'valid' only includes the portion of the array that can be completely covered by the window.
The 'valid' mode is typically used for the running mean, as it provides a result that does not include the windowed sections of the beginning and end of the array.
Example:
In the example above, the result will be:
[4. 5. 6. 7. 8. 9.]
This represents the running mean of the input array with a window size of 3.
The above is the detailed content of How to Calculate a Running Mean (Moving Average) in Python Using NumPy?. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

WebStorm Mac version
Useful JavaScript development tools
