search
HomeBackend DevelopmentC++How Can We Efficiently Implement log2(__m256d) in AVX2 for Both Intel and AMD Processors?

How Can We Efficiently Implement log2(__m256d) in AVX2 for Both Intel and AMD Processors?

Efficient Implementation of log2(__m256d) in AVX2

SVML's __m256d _mm256_log2_pd (__m256d a) is limited to Intel compilers and reportedly slower on AMD processors. Alternative implementations exist, but they often focus on SSE rather than AVX2. This discussion aims to provide an efficient implementation of log2() for vectors of four double numbers that is compatible with various compilers and performs well on both AMD and Intel processors.

Traditional Strategy

The usual approach leverages the formula log2(a*b) = log2(a) log2(b), which simplifies to exponent log2(mantissa) for double numbers. The mantissa has a limited range of 1.0 to 2.0, making it suitable for a polynomial approximation to obtain log2(mantissa).

Accuracy and Precision

The desired accuracy and range of inputs influence the implementation. Agner Fog's VCL aims for high precision using error avoidance techniques. However, for faster approximate float log(), consider JRF's polynomial implementation (found here: http://jrfonseca.blogspot.ca/2008/09/fast-sse2-pow-tables-or-polynomials.html).

VCL Algorithm

VCL's log float and double functions follow a two-part approach:

  1. Extract exponent and mantissa: The exponent is converted back to a float, and the mantissa is adjusted with a check for values less than SQRT2*0.5. This is followed by a subtraction of 1.0 from the mantissa.
  2. Polynomial approximation: A polynomial approximation is applied to the adjusted mantissa to calculate log(x) around x=1.0. For double precision, VCL uses a ratio of two 5th-order polynomials.

The final result is obtained by adding the exponent to the polynomial approximation. VCL includes extra steps to minimize rounding error.

Alternative Polynomial Approximations

For increased accuracy, you can use VCL directly. However, for a faster approximate log2() implementation for float, consider porting JRF's SSE2 function to AVX2 with FMA.

Avoiding Rounding Error

VCL uses various techniques to reduce rounding error. These include:

  • Splitting ln2 into smaller constants (ln2_lo and ln2_hi)
  • Adding the line res = nmul_add(x2, 0.5, x); to the polynomial evaluation

Stripping Unnecessary Steps

If your values are known to be finite and positive, you can significantly improve performance by commenting out the checks for underflow, overflow, or denormal.

Further Reading

  • [Polynomial approximation with minimax error](http://gallium.inria.fr/blog/fast-vectorizable-math-approx/)
  • [Fast approximate logarithm using bit manipulation](http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html)

The above is the detailed content of How Can We Efficiently Implement log2(__m256d) in AVX2 for Both Intel and AMD Processors?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does the C   Standard Template Library (STL) work?How does the C Standard Template Library (STL) work?Mar 12, 2025 pm 04:50 PM

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

How do I use algorithms from the STL (sort, find, transform, etc.) efficiently?How do I use algorithms from the STL (sort, find, transform, etc.) efficiently?Mar 12, 2025 pm 04:52 PM

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

How does dynamic dispatch work in C   and how does it affect performance?How does dynamic dispatch work in C and how does it affect performance?Mar 17, 2025 pm 01:08 PM

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

How do I use ranges in C  20 for more expressive data manipulation?How do I use ranges in C 20 for more expressive data manipulation?Mar 17, 2025 pm 12:58 PM

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

How do I use move semantics in C   to improve performance?How do I use move semantics in C to improve performance?Mar 18, 2025 pm 03:27 PM

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

How do I handle exceptions effectively in C  ?How do I handle exceptions effectively in C ?Mar 12, 2025 pm 04:56 PM

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

How do I use rvalue references effectively in C  ?How do I use rvalue references effectively in C ?Mar 18, 2025 pm 03:29 PM

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

How does C  's memory management work, including new, delete, and smart pointers?How does C 's memory management work, including new, delete, and smart pointers?Mar 17, 2025 pm 01:04 PM

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.