


How Can We Efficiently Implement log2(__m256d) in AVX2 for Both Intel and AMD Processors?
Efficient Implementation of log2(__m256d) in AVX2
SVML's __m256d _mm256_log2_pd (__m256d a) is limited to Intel compilers and reportedly slower on AMD processors. Alternative implementations exist, but they often focus on SSE rather than AVX2. This discussion aims to provide an efficient implementation of log2() for vectors of four double numbers that is compatible with various compilers and performs well on both AMD and Intel processors.
Traditional Strategy
The usual approach leverages the formula log2(a*b) = log2(a) log2(b), which simplifies to exponent log2(mantissa) for double numbers. The mantissa has a limited range of 1.0 to 2.0, making it suitable for a polynomial approximation to obtain log2(mantissa).
Accuracy and Precision
The desired accuracy and range of inputs influence the implementation. Agner Fog's VCL aims for high precision using error avoidance techniques. However, for faster approximate float log(), consider JRF's polynomial implementation (found here: http://jrfonseca.blogspot.ca/2008/09/fast-sse2-pow-tables-or-polynomials.html).
VCL Algorithm
VCL's log float and double functions follow a two-part approach:
- Extract exponent and mantissa: The exponent is converted back to a float, and the mantissa is adjusted with a check for values less than SQRT2*0.5. This is followed by a subtraction of 1.0 from the mantissa.
- Polynomial approximation: A polynomial approximation is applied to the adjusted mantissa to calculate log(x) around x=1.0. For double precision, VCL uses a ratio of two 5th-order polynomials.
The final result is obtained by adding the exponent to the polynomial approximation. VCL includes extra steps to minimize rounding error.
Alternative Polynomial Approximations
For increased accuracy, you can use VCL directly. However, for a faster approximate log2() implementation for float, consider porting JRF's SSE2 function to AVX2 with FMA.
Avoiding Rounding Error
VCL uses various techniques to reduce rounding error. These include:
- Splitting ln2 into smaller constants (ln2_lo and ln2_hi)
- Adding the line res = nmul_add(x2, 0.5, x); to the polynomial evaluation
Stripping Unnecessary Steps
If your values are known to be finite and positive, you can significantly improve performance by commenting out the checks for underflow, overflow, or denormal.
Further Reading
- [Polynomial approximation with minimax error](http://gallium.inria.fr/blog/fast-vectorizable-math-approx/)
- [Fast approximate logarithm using bit manipulation](http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html)
The above is the detailed content of How Can We Efficiently Implement log2(__m256d) in AVX2 for Both Intel and AMD Processors?. For more information, please follow other related articles on the PHP Chinese website!

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

The main differences between C# and C are syntax, memory management and performance: 1) C# syntax is modern, supports lambda and LINQ, and C retains C features and supports templates. 2) C# automatically manages memory, C needs to be managed manually. 3) C performance is better than C#, but C# performance is also being optimized.

You can use the TinyXML, Pugixml, or libxml2 libraries to process XML data in C. 1) Parse XML files: Use DOM or SAX methods, DOM is suitable for small files, and SAX is suitable for large files. 2) Generate XML file: convert the data structure into XML format and write to the file. Through these steps, XML data can be effectively managed and manipulated.

Working with XML data structures in C can use the TinyXML or pugixml library. 1) Use the pugixml library to parse and generate XML files. 2) Handle complex nested XML elements, such as book information. 3) Optimize XML processing code, and it is recommended to use efficient libraries and streaming parsing. Through these steps, XML data can be processed efficiently.

C still dominates performance optimization because its low-level memory management and efficient execution capabilities make it indispensable in game development, financial transaction systems and embedded systems. Specifically, it is manifested as: 1) In game development, C's low-level memory management and efficient execution capabilities make it the preferred language for game engine development; 2) In financial transaction systems, C's performance advantages ensure extremely low latency and high throughput; 3) In embedded systems, C's low-level memory management and efficient execution capabilities make it very popular in resource-constrained environments.

The choice of C XML framework should be based on project requirements. 1) TinyXML is suitable for resource-constrained environments, 2) pugixml is suitable for high-performance requirements, 3) Xerces-C supports complex XMLSchema verification, and performance, ease of use and licenses must be considered when choosing.

C# is suitable for projects that require development efficiency and type safety, while C is suitable for projects that require high performance and hardware control. 1) C# provides garbage collection and LINQ, suitable for enterprise applications and Windows development. 2)C is known for its high performance and underlying control, and is widely used in gaming and system programming.

C code optimization can be achieved through the following strategies: 1. Manually manage memory for optimization use; 2. Write code that complies with compiler optimization rules; 3. Select appropriate algorithms and data structures; 4. Use inline functions to reduce call overhead; 5. Apply template metaprogramming to optimize at compile time; 6. Avoid unnecessary copying, use moving semantics and reference parameters; 7. Use const correctly to help compiler optimization; 8. Select appropriate data structures, such as std::vector.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
