Pydantic is a data validation and settings management library for Python. It uses Python type hints to validate and parse data, ensuring that your code works with properly structured and typed data. By leveraging Python’s dataclass-like model structure, Pydantic makes it easy to define schemas for complex data and automatically validate and serialize/deserialize data in a clean, Pythonic way. Let's explore the main features:
Data Validation
Automatically validate input data against a schema using Python's type hints.
from pydantic import BaseModel, ValidationError class User(BaseModel): id: int name: str email: str # Valid input user = User(id=1, name="John Doe", email="john@example.com") print(user) # Invalid input try: user = User(id="not-an-integer", name="Jane", email="jane@example.com") except ValidationError as err: print(err)
Whenever you want to define data model, use pydantic.BaseModel!
Function Validation
Pydantic provides powerful tools for validating not just data models but also the input and output of functions. This is achieved using the @validate_call decorator, allowing you to enforce strict data validation for function arguments and return values. If the provided arguments or return type don’t match the expected types, a ValidationError is raised.
from pydantic import validate_call @validate_call def greet(name: str, age: int) -> str: return f"Hello {name}, you are {age} years old." # Valid input print(greet("Alice", 30)) # Output: Hello Alice, you are 30 years old. # Invalid input try: greet("Bob", "not-a-number") except Exception as e: print(e)
By enabling the validate_return flag in @validate_call, Pydantic will also validate the return value of the function against its annotated return type. This ensures the function adheres to the expected output schema.
from pydantic import validate_call @validate_call(validate_return=True) def calculate_square(number: int) -> int: return number ** 2 # Correct return type # Valid input and return print(calculate_square(4)) # Output: 16 # Invalid return value @validate_call(validate_return=True) def broken_square(number: int) -> int: return str(number ** 2) # Incorrect return type try: broken_square(4) except Exception as e: print(e)
Parsing
Pydantic can parse complex nested structures, including JSON data, into model objects.
from pydantic import BaseModel from typing import List class Item(BaseModel): name: str price: float class Order(BaseModel): items: List[Item] total: float # JSON-like data data = { "items": [ {"name": "Apple", "price": 1.2}, {"name": "Banana", "price": 0.8} ], "total": 2.0 } order = Order(**data) print(order) # items=[Item(name='Apple', price=1.2), Item(name='Banana', price=0.8)] total=2.0
Serialization and Deserialization
Pydantic models can be serialized into JSON or dictionaries and reconstructed back.
from pydantic import BaseModel class User(BaseModel): id: int name: str email: str # Create a model instance user = User(id=1, name="Alice", email="alice@example.com") # Serialize to dictionary and JSON user_dict = user.model_dump() user_json = user.model_dump(mode='json') print("Dictionary:", user_dict) print("JSON:", user_json) # Deserialize back to the model new_user = User.model_validate(user_json) print("Parsed User:", new_user)
Flexible Validation
Data validation is not force-type validation. For example, if you define a model with id, due_date, and priority fields of types int, bool, and datetime respectively, you can pass:
- numerical string as id
- ISO-8601, UTC or strings of the other date formats as due_date
- 'yes'/'no', 'on'/'off', 'true'/'false', 1/0 etc. as priority
from sensei import APIModel from datetime import datetime class Task(APIModel): id: int due_date: datetime priority: bool task = Task(due_date='2024-10-15T15:30:00',> <p>The result will be<br> </p> <pre class="brush:php;toolbar:false">Task(id=1, due_date=datetime.datetime(2024, 10, 15, 15, 30), priority=True)
Custom Validation
You can also define custom validation logic in your model using validators. They allow you to apply more complex validation rules that cannot be easily expressed using the built-in types or field constraints. Validator is defined through the field_validator decorator or Field object. You can pass one or more field names to field_validator, to determine what fields will use this validator, or '*' to apply validator for every field.
from typing import Any from pydantic import Field, field_validator, EmailStr, BaseModel class User(BaseModel): id: int username: str = Field(pattern=r'^w $') email: EmailStr age: int = Field(18, ge=14) is_active: bool = True roles: list[str] # Define validator executed 'before' internal parsing @field_validator('roles', mode='before') def _validate_roles(cls, value: Any): return value.split(',') if isinstance(value, str) else value user = User(id=1, username='john', email='john@example.com', roles='student,singer') print(user) #> <h2> Open-source Projects </h2> <p>There are a lot of open-source projects powered by Pydantic. Let's explore the best of them:</p> <h3> FastAPI </h3> <p>One of the most prominent use cases of Pydantic is in FastAPI, a modern web framework for building APIs with Python. FastAPI uses Pydantic models extensively for request body validation, query parameters, and response schemas.</p>
- Source: https://github.com/fastapi/fastapi
- Docs: https://fastapi.tiangolo.com
Sensei
While FastAPI is designed for building APIs, Sensei is designed for wrapping these APIs quickly and easy. API Clients powered by Sensei ensure users they will get relevant data models and will not get confusing errors.
- Source: https://github.com/CrocoFactory/sensei
- Docs: https://sensei.crocofactory.dev
SQLModel and Typer
SQLModel and Typer are two remarkable projects developed by Sebastián Ramírez, the creator of FastAPI.
SQLModel is a library designed to streamline database interactions in Python applications. Built on top of SQLAlchemy and Pydantic, SQLModel combines the power of an ORM with the convenience of data validation and serialization.
- Source: https://github.com/fastapi/sqlmodel
- Docs: https://sqlmodel.tiangolo.com
Typer is a framework for creating command-line interface (CLI) applications using Python. It simplifies the process by using Python's type hints to automatically generate user-friendly CLI commands and help text.
- Source: https://github.com/fastapi/typer
- Docs: https://typer.tiangolo.com
The above is the detailed content of Pydantic: The end of manual validations! ✨. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

WebStorm Mac version
Useful JavaScript development tools
