Pydantic is a data validation and settings management library for Python. It uses Python type hints to validate and parse data, ensuring that your code works with properly structured and typed data. By leveraging Python’s dataclass-like model structure, Pydantic makes it easy to define schemas for complex data and automatically validate and serialize/deserialize data in a clean, Pythonic way. Let's explore the main features:
Data Validation
Automatically validate input data against a schema using Python's type hints.
from pydantic import BaseModel, ValidationError class User(BaseModel): id: int name: str email: str # Valid input user = User(id=1, name="John Doe", email="john@example.com") print(user) # Invalid input try: user = User(id="not-an-integer", name="Jane", email="jane@example.com") except ValidationError as err: print(err)
Whenever you want to define data model, use pydantic.BaseModel!
Function Validation
Pydantic provides powerful tools for validating not just data models but also the input and output of functions. This is achieved using the @validate_call decorator, allowing you to enforce strict data validation for function arguments and return values. If the provided arguments or return type don’t match the expected types, a ValidationError is raised.
from pydantic import validate_call @validate_call def greet(name: str, age: int) -> str: return f"Hello {name}, you are {age} years old." # Valid input print(greet("Alice", 30)) # Output: Hello Alice, you are 30 years old. # Invalid input try: greet("Bob", "not-a-number") except Exception as e: print(e)
By enabling the validate_return flag in @validate_call, Pydantic will also validate the return value of the function against its annotated return type. This ensures the function adheres to the expected output schema.
from pydantic import validate_call @validate_call(validate_return=True) def calculate_square(number: int) -> int: return number ** 2 # Correct return type # Valid input and return print(calculate_square(4)) # Output: 16 # Invalid return value @validate_call(validate_return=True) def broken_square(number: int) -> int: return str(number ** 2) # Incorrect return type try: broken_square(4) except Exception as e: print(e)
Parsing
Pydantic can parse complex nested structures, including JSON data, into model objects.
from pydantic import BaseModel from typing import List class Item(BaseModel): name: str price: float class Order(BaseModel): items: List[Item] total: float # JSON-like data data = { "items": [ {"name": "Apple", "price": 1.2}, {"name": "Banana", "price": 0.8} ], "total": 2.0 } order = Order(**data) print(order) # items=[Item(name='Apple', price=1.2), Item(name='Banana', price=0.8)] total=2.0
Serialization and Deserialization
Pydantic models can be serialized into JSON or dictionaries and reconstructed back.
from pydantic import BaseModel class User(BaseModel): id: int name: str email: str # Create a model instance user = User(id=1, name="Alice", email="alice@example.com") # Serialize to dictionary and JSON user_dict = user.model_dump() user_json = user.model_dump(mode='json') print("Dictionary:", user_dict) print("JSON:", user_json) # Deserialize back to the model new_user = User.model_validate(user_json) print("Parsed User:", new_user)
Flexible Validation
Data validation is not force-type validation. For example, if you define a model with id, due_date, and priority fields of types int, bool, and datetime respectively, you can pass:
- numerical string as id
- ISO-8601, UTC or strings of the other date formats as due_date
- 'yes'/'no', 'on'/'off', 'true'/'false', 1/0 etc. as priority
from sensei import APIModel from datetime import datetime class Task(APIModel): id: int due_date: datetime priority: bool task = Task(due_date='2024-10-15T15:30:00',> <p>The result will be<br> </p> <pre class="brush:php;toolbar:false">Task(id=1, due_date=datetime.datetime(2024, 10, 15, 15, 30), priority=True)
Custom Validation
You can also define custom validation logic in your model using validators. They allow you to apply more complex validation rules that cannot be easily expressed using the built-in types or field constraints. Validator is defined through the field_validator decorator or Field object. You can pass one or more field names to field_validator, to determine what fields will use this validator, or '*' to apply validator for every field.
from typing import Any from pydantic import Field, field_validator, EmailStr, BaseModel class User(BaseModel): id: int username: str = Field(pattern=r'^w $') email: EmailStr age: int = Field(18, ge=14) is_active: bool = True roles: list[str] # Define validator executed 'before' internal parsing @field_validator('roles', mode='before') def _validate_roles(cls, value: Any): return value.split(',') if isinstance(value, str) else value user = User(id=1, username='john', email='john@example.com', roles='student,singer') print(user) #> <h2> Open-source Projects </h2> <p>There are a lot of open-source projects powered by Pydantic. Let's explore the best of them:</p> <h3> FastAPI </h3> <p>One of the most prominent use cases of Pydantic is in FastAPI, a modern web framework for building APIs with Python. FastAPI uses Pydantic models extensively for request body validation, query parameters, and response schemas.</p>
- Source: https://github.com/fastapi/fastapi
- Docs: https://fastapi.tiangolo.com
Sensei
While FastAPI is designed for building APIs, Sensei is designed for wrapping these APIs quickly and easy. API Clients powered by Sensei ensure users they will get relevant data models and will not get confusing errors.
- Source: https://github.com/CrocoFactory/sensei
- Docs: https://sensei.crocofactory.dev
SQLModel and Typer
SQLModel and Typer are two remarkable projects developed by Sebastián Ramírez, the creator of FastAPI.
SQLModel is a library designed to streamline database interactions in Python applications. Built on top of SQLAlchemy and Pydantic, SQLModel combines the power of an ORM with the convenience of data validation and serialization.
- Source: https://github.com/fastapi/sqlmodel
- Docs: https://sqlmodel.tiangolo.com
Typer is a framework for creating command-line interface (CLI) applications using Python. It simplifies the process by using Python's type hints to automatically generate user-friendly CLI commands and help text.
- Source: https://github.com/fastapi/typer
- Docs: https://typer.tiangolo.com
The above is the detailed content of Pydantic: The end of manual validations! ✨. For more information, please follow other related articles on the PHP Chinese website!

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Chinese version
Chinese version, very easy to use

Atom editor mac version download
The most popular open source editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)