search
HomeBackend DevelopmentPython TutorialAn easy way to remove PII before sending to LLMs

An easy way to remove PII before sending to LLMs

Not all scenarios demand perfect anonymization. In less critical cases, a lightweight anonymization pipeline can suffice. Here, I share a Python-based approach leveraging GLiNER, Faker, and rapidfuzz to anonymize text by replacing sensitive entities with realistic placeholders.

The code first identifies sensitive entities (like names, countries, and professions) using GLiNER. Then, it replaces these entities with fake counterparts generated by Faker. Approximate string matching (rapidfuzz) ensures even variations in the text are anonymized. After processing with the LLM, the original entities are restored.

This method is designed for non-critical use cases where perfect anonymization isn't mandatory. For example, analyzing reviews or answering a query that comes to the chatbot on your website without saving data generally fall under less critical cases. The code is not perfect but good enough to get you started.

from gliner import GLiNER
from faker import Faker
from faker.providers import job
import google.generativeai as genai
import re
import warnings
from rapidfuzz import process, utils
warnings.filterwarnings("ignore")

genai.configure(api_key="key")
model_llm = genai.GenerativeModel("gemini-1.5-flash-002")
fake = Faker()
fake.add_provider(job)
model_gliner = GLiNER.from_pretrained("urchade/gliner_small-v2.1")

# let's say we have this prompt along with context that we want to anonymize before sending to LLM
prompt= f"""Given the context, answer the question. \n context: Hi, I am Mayank Laddha.  I lives in India. I love my country. But I would like to go to Singapore once. I am a software developer.\n question: Where does Mayank Laddha want to go?"
"""
# Perform entity prediction
labels = ["Person", "Country", "Profession"]
entities = model_gliner.predict_entities(prompt, labels, threshold=0.4)
print(entities)

# create a replacement dictionary
replacement = {}
for entity in entities: 
    if "Person" in entity["label"] and entity["text"] not in replacement:
        fake_set = {fake.name() for _ in range(3)}
        fake_set.discard(entity["text"])
        new_name = fake_set.pop()
        replacement[entity["text"]] = new_name
    elif "Country" in entity["label"] and entity["text"] not in replacement:
        name_set = {fake.country() for _ in range(10)}
        print(name_set)
        name_set.discard(entity["text"])
        new_name = name_set.pop()
        replacement[entity["text"]] = new_name
    elif "Profession" in entity["label"] and entity["text"] not in replacement:
        name_set = {fake.job() for _ in range(20)}
        name_set = {k for k in name_set if len(k.split())==1}
        print(name_set)
        name_set.discard(entity["text"])
        new_name = name_set.pop()
        replacement[entity["text"]] = new_name

#also create a reverse dictionary
replacement_reversed = {v: k for k, v in replacement.items()}

#perform replacement
for k, v in replacement.items():
    # Split text into a list of words
    words = prompt.split()  
    n = len(k.split()) 
    # so the key appears fully in choices
    choices = [' '.join(words[i:i+n]) for i in range(len(words) - n + 1)] 
    matches = process.extract(k, choices, limit=1, processor=utils.default_process)
    for match in matches:
        if match[1]>80:
            prompt = re.sub(match[0], v, prompt, flags=re.IGNORECASE)

#prompt
response = model_llm.generate_content(prompt)
content = response.text
print("llm response",content)

#perform replacement again
for k, v in replacement_reversed.items():
    words = content.split()  
    n = len(k.split())
    choices = [' '.join(words[i:i+n]) for i in range(len(words) - n + 1)]
    matches = process.extract(k, choices, limit=1, processor=utils.default_process)
    for match in matches:
        if match[1]>80:
            content = re.sub(match[0], v, content, flags=re.IGNORECASE)

print("final result", content)

The above is the detailed content of An easy way to remove PII before sending to LLMs. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Merging Lists in Python: Choosing the Right MethodMerging Lists in Python: Choosing the Right MethodMay 14, 2025 am 12:11 AM

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

How to concatenate two lists in python 3?How to concatenate two lists in python 3?May 14, 2025 am 12:09 AM

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Python concatenate list stringsPython concatenate list stringsMay 14, 2025 am 12:08 AM

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

Python execution, what is that?Python execution, what is that?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Python: what are the key featuresPython: what are the key featuresMay 14, 2025 am 12:02 AM

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools