


I was finding a fun project to work with Go, HTMX, and Tailwwindcss and ended up built a simple real-time web based system monitor with the power of web socket. Here’s the result.
It shows system information, memories, disk, CPU, and running processes, updated automatically every 5 seconds.
I’ll break down the code little bit in this post.
Stacks
- Go 1.23.2
- Htmx
- Tailwindcss
- Gopsutil
- Websocket
- Htmx websocket extension
HTTP Server
type HttpServer struct { subscriberMessageBuffer int Mux http.ServeMux subscribersMutex sync.Mutex subscribers map[*subscriber]struct{} } type subscriber struct { msgs chan []byte }
It’s quite straightforward. HttpServer contains a http.ServeMux as http handler and subscribers for web socket broadcasting later. subscriber is simply has msgs channel for data update.
Since it only needs to serve a single HTML file, then it needs URL to show the page, and one URL for web socket connection.
func NewHttpServer() *HttpServer { s := &HttpServer{ subscriberMessageBuffer: 10, subscribers: make(map[*subscriber]struct{}), } s.Mux.Handle("/", http.FileServer(http.Dir("./views"))) s.Mux.HandleFunc("/ws", s.subscribeHandler) return s }
Web Socket Connection & Subscriber
Endpoint /ws will handling web socket connection and managing a subscriber. First it will initiate a new subscriber and added it to a map in the http server structure. Lock will be used to prevent race condition since we will use go routine later.
func (s *HttpServer) subscribeHandler(w http.ResponseWriter, r *http.Request) { err := s.subscribe(r.Context(), w, r) if err != nil { fmt.Println(err) return } } func (s *HttpServer) addSubscriber(subscriber *subscriber) { s.subscribersMutex.Lock() s.subscribers[subscriber] = struct{}{} s.subscribersMutex.Unlock() fmt.Println("subscriber added", subscriber) }
Web socket is starting accept a connection and via loop, we will detect an incoming channel msgs from subscriber and write it to web socket.
func (s *HttpServer) subscribe(ctx context.Context, w http.ResponseWriter, r *http.Request) error { var c *websocket.Conn subscriber := &subscriber{ msgs: make(chan []byte, s.subscriberMessageBuffer), } s.addSubscriber(subscriber) c, err := websocket.Accept(w, r, nil) if err != nil { return err } defer c.CloseNow() ctx = c.CloseRead(ctx) for { select { case msg := <h2> Auto Update </h2> <p>Auto update the system info data is handled by go routine. We will build a html response that will be sent via web socket and htmx will handle the update on the html side.<br> </p> <pre class="brush:php;toolbar:false">func main() { fmt.Println("Starting system monitor") s := server.NewHttpServer() go func(s *server.HttpServer) { for { hostStat, _ := host.Info() timestamp := time.Now().Format("2006-01-02 15:04:05") html := ` <span hx-swap-oob="innerHTML:#data-timestamp">` + timestamp + `</span> <span hx-swap-oob="innerHTML:#system-hostname">` + hostStat.Hostname + `</span> <span hx-swap-oob="innerHTML:#system-os">` + hostStat.OS + `</span> ` s.Broadcast([]byte(html)) time.Sleep(time.Second * 5) } }(s) // ... }
Syntax hx-swap-oob="innerHTML:#data-timestamp" in htmx is tell us that swap a component inside data-timestamp id in our HTML. All swapping mechanism will be the same for other system information components.
All swappable html components will be sent via Broadcast(msg) method and later will be sent via channel every 5 seconds.
func (s *HttpServer) Broadcast(msg []byte) { s.subscribersMutex.Lock() for subscriber := range s.subscribers { subscriber.msgs <h2> The HTMX View </h2> <p>It’s plain HTML file and for Tailwindcss I simple used CDN for that<br> </p> <pre class="brush:php;toolbar:false"><script src="https://cdn.tailwindcss.com"></script>
Same idea for HTMX and web socket extension for using CDN.
<script src="https://unpkg.com/htmx.org@2.0.3" integrity="sha384-0895/pl2MU10Hqc6jd4RvrthNlDiE9U1tWmX7WRESftEDRosgxNsQG/Ze9YMRzHq" crossorigin="anonymous"></script> <script src="https://unpkg.com/htmx-ext-ws@2.0.1/ws.js"></script>
How to connect to the web socket?
The system monitor page is expected to receives all the data by web socket so I can set it from the main div container. Specify hx-ext=”ws”to tell HTMX for using web socket extension and ws-connect=”/ws” to tell web socket to connect via /ws URL.
<h2> Full Code </h2> <p>Here is the full version of the code https://github.com/didikz/gosysmon-web and you may want to play around with your own version.</p> <p>Happy coding!</p>
The above is the detailed content of Building Simple Real-Time System Monitor using Go, HTMX, and Web Socket. For more information, please follow other related articles on the PHP Chinese website!

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang is suitable for rapid development and concurrent programming, while C is more suitable for projects that require extreme performance and underlying control. 1) Golang's concurrency model simplifies concurrency programming through goroutine and channel. 2) C's template programming provides generic code and performance optimization. 3) Golang's garbage collection is convenient but may affect performance. C's memory management is complex but the control is fine.

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Zend Studio 13.0.1
Powerful PHP integrated development environment

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download
The most popular open source editor